HAMPSTEAD SCHODL
Learning together Achieving together

Y11-12
 Summer Bridging Tasks 2023

Chemistry A Level

Name: \qquad

- You should spend some time during the summer holidays working on the activities in this booklet.
- You will be required to hand in this booklet in your first lesson at the start of Year 12 and the content will be used to form the basis of your first assessments.
- You should try your best and show commitment to your studies.
- We are really looking forward to you coming to Hampstead School Sixth Form and studying A Level Chemistry
the

Transition Pack for A Level Chemistry

Get ready for A-level!
 A guide to help you get ready for A-level Chemistry, including everything from topic guides to days out and online learning courses.

Commissioned by The PiXL Club Ltd. February 2016
© Copyright The PiXL Club Ltd, 2016

Please note: these resources are non-board specific. Please direct your students to the specifics of where this knowledge and skills most apply.
partners in excellence

So yoy are considering A Lexel Chemistry?

This pack contains a programme of activities and resources to prepare you to start an A level in Chemistry in September. It is aimed to be used after you complete your GCSE, throughout the remainder of the summer term and over the Summer Holidays to ensure you are ready to start your course in September.
partners in excellence

Pre-Knowledge Topics

Chemistry topic 1 - Electronic structure, how electrons are arranged around the nucleus

A periodic table can give you the proton / atomic number of an element, this also tells you how many electrons are in the atom.

You will have used the rule of electrons shell filling, where:

The first shell holds up to 2 electrons, the second up to 8 , the third up to 8 and the fourth up to 18 (or you may have been told 8).

The 'shells' can be broken down into 'orbitals', which are given letters:'s' orbitals, ' p ' orbitals and ' d ' orbitals.
You can read about orbitals here:
http://bit.ly/pixlchem1
http://www.chemguide.co.uk/atoms/properties/atomorbs.html\#top

Now that you are familiar with s, p and d orbitals try these problems, write your answer in the format:
$1 s^{2}, 2 s^{2}, 2 p^{6}$ etc.
Q1.1 Write out the electron configuration of:
a) Ca
b) Al
c) S
d) Cl
e) Ar
f) Fe
g) V
h) Ni
i) Cu
j) Zn
k) As

Q1.2 Extension question, can you write out the electron arrangement of the following ions:
a) K^{+}
b) O^{2-}
c) Zn^{2+}
d) V^{5+}
e) Co^{2+}
partners in excellence

Chemistry topic 2 - Oxidation and reduction

At GCSE you know that oxidation is adding oxygen to an atom or molecule and that reduction is removing oxygen, or that oxidation is removing hydrogen and reduction is adding hydrogen. You may have also learned that oxidation is removing electrons and reduction is adding electrons.

At A level we use the idea of oxidation number a lot!
You know that the metals in group 1 react to form ions that are +1 , i.e. Na^{+}and that group 7, the halogens, form -1 ions, i.e. Br -.

We say that sodium, when it has reacted has an oxidation number of +1 and that bromide has an oxidation number of -1.

All atoms that are involved in a reaction can be given an oxidation number.
An element, Na or O_{2} is always given an oxidation state of zero (0), any element that has reacted has an oxidation state of + or -.

As removing electrons is reduction, if, in a reaction the element becomes more negative it has been reduced, if it becomes more positive it has been oxidised.

```
-5 0 +5
You can read about the rules for assigning oxidation numbers here:
http://www.dummies.com/how-to/content/rules-for-assigning-oxidation-numbers-to-elements.html
```

Elements that you expect to have a specific oxidation state actually have different states, so for example you would expect chlorine to be -1 , it can have many oxidation states: NaClO , in this compound it has an oxidation state of +1

There are a few simple rules to remember:
Metals have a + oxidation state when they react.
Oxygen is 'king' it always has an oxidation state of -2
Hydrogen has an oxidation state of +1 (except metal hydrides)
The charges in a molecule must cancel.
Examples: Sodium nitrate, NaNO_{3}

	$\mathrm{Na}+1$	$3 \mathrm{XO}^{2-}$	$4 \mathrm{XO}^{2-}$ and 2-charges 'showing'	
To cancel:	+1	-6	-8	-2
	$\mathrm{~N}=+5$	$\mathrm{~S}=+6$		

sulfate ion, $\mathrm{SO}_{4}{ }^{2-}$

Q2.1 Work out the oxidation state of the underlined atom in the following:
a) MgCO_{3}
b) SO_{3}
c) NaClO_{3}
d) MnO_{2}
e) $\mathrm{Fe}_{2} \mathrm{O}_{3}$
f) $\mathrm{V}_{2} \mathrm{O}_{5}$
g) KMnO_{4}
h) $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
i) $\mathrm{Cl}_{2} \mathrm{O}_{4}$
partners in excellenc

Chemistry topic 3 - Isotopes and mass

You will remember that an isotopes are elements that have differing numbers of neutrons. Hydrogen has 3 isotopes; $H_{1}^{1} \quad H_{1}^{2} \quad H_{1}^{3}$

Isotopes occur naturally, so in a sample of an element you will have a mixture of these isotopes. We can accurately measure the amount of an isotope using a mass spectrometer. You will need to understand what a mass spectrometer is and how it works at A level. You can read about a mass spectrometer here:

http://bit.ly/pixlchem3
http://www.kore.co.uk/tutorial.htm
http://bit.ly/pixlchem4
http://filestore.aqa.org.uk/resources/chemistry/AQA-7404-7405-TN-MASS-SPECTROMETRY.PDF

Q3.1 What must happen to the atoms before they are accelerated in the mass spectrometer?
Q3.2 Explain why the different isotopes travel at different speeds in a mass spectrometer.
A mass spectrum for the element chlorine will give a spectrum like this:

75% of the sample consist of chlorine-35, and 25% of the sample is chlorine-37.

Given a sample of naturally occurring chlorine $3 / 4$ of it will be $\mathrm{Cl}-35$ and $1 / 4$ of it is $\mathrm{Cl}-37$. We can calculate what the mean mass of the sample will be:

$$
\text { Mean mass }=\frac{75}{100} \times 35+\frac{25}{100} \times 37=35.5
$$

If you look at a periodic table this is why chlorine has an atomic mass of 35.5.
http://www.avogadro.co.uk/definitions/ar.htm
An A level periodic table has the masses of elements recorded much more accurately than at GCSE. Most elements have isotopes and these have been recorded using mass spectrometers.

GCSE

$\begin{gathered} 11 \\ \mathbf{B} \\ \text { boomen } \\ 5 \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{C} \\ \text { carton } \\ 6 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{N} \\ \text { nitogen } \\ 7 \end{gathered}$	$\begin{gathered} 16 \\ 0 \\ 0 \times x g e n \\ 8 \end{gathered}$	$\begin{gathered} 19 \\ F \\ \text { fucoune } \\ 9 \end{gathered}$
27	28	31	32	35.5
Al	Si	P	S	Cl
13	${ }_{14}$	15	${ }_{16}$	${ }_{\substack{\text { chiome } \\ 17}}$

${ }_{5}^{10.8} \mathbf{8}$	${ }_{6}^{12.0}$ carbon	$\underset{\substack{7 \\ \text { nitrogen }}}{14.0}$	${ }_{8}^{16.0}$ oxygen	${ }_{9}^{19.0} F$ fluorine
${ }_{13}^{27.0} \mathrm{Al}$	${ }_{14}^{28.1} \mathrm{Si}$	31.0 phosphorus	${ }_{16}^{32.1} \mathrm{~S}$	${ }_{\substack{17 \\ \text { chlorine }}}^{35.5}$

Given the percentage of each isotope you can calculate the mean mass which is the accurate atomic mass for that element.
Q3.3 Use the percentages of each isotope to calculate the accurate atomic mass of the following elements.
a) Antimony has 2 isotopes: $\mathrm{Sb}-12157.25 \%$ and $\mathrm{Sb}-12342.75 \%$
b) Gallium has 2 isotopes: Ga-69 60.2\% and Ga-71 39.8\%
c) Silver has 2 isotopes: Ag-107 51.35\% and Ag-109 48.65\%
d) Thallium has 2 isotopes: $\mathrm{Tl}-20329.5 \%$ and $\mathrm{TI}-20570.5 \%$
e) Strontium has 4 isotopes: $\mathrm{Sr}-840.56 \%, \mathrm{Sr}-86$ 9.86\%, $\mathrm{Sr}-87 \mathrm{7.02} \mathrm{\%}$ and $\mathrm{Sr}-8882.56 \%$
partners in excellence

Chemistry topic 4 - Chemical equations

Balancing chemical equations is the stepping stone to using equations to calculate masses in chemistry.
There are loads of websites that give ways of balancing equations and lots of exercises in balancing.
Some of the equations to balance may involve strange chemical, don't worry about that, the key idea is to get balancing right.
http://bit.ly/pixlchem7
http://www.chemteam.info/Equations/Balance-Equation.html

This website has a download; it is safe to do so:

http://bit.ly/pixlchem8

https://phet.colorado.edu/en/simulation/balancing-chemical-equations

Q5.1 Balance the following equations
a. $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{S}_{8}+02 \rightarrow \mathrm{SO}_{3}$
c. $\mathrm{HgO} \rightarrow \mathrm{Hg}+\mathrm{O}_{2}$
d. $\mathrm{Zn}+\mathrm{HCl} \rightarrow \quad \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
e. $\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{H}_{2}$
f. $\mathrm{C}_{10} \mathrm{H}_{16}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}+\mathrm{HCl}$
g. $\mathrm{Fe}+\mathrm{O}_{2} \rightarrow \quad \mathrm{Fe}_{2} \mathrm{O}_{3}$
h. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} \rightarrow \quad \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
i. $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \rightarrow \mathrm{Fe}+\mathrm{H}_{2} \mathrm{O}$
j. $\mathrm{Al}+\mathrm{FeO} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Fe}$
partners in excellence

Chemistry topic 5 - Solutions and concentrations

In chemistry a lot of the reactions we carry out involve mixing solutions rather than solids, gases or liquids.
You will have used bottles of acids in science that have labels saying 'Hydrochloric acid 1 M ', this is a solution of hydrochloric acid where 1 mole of HCl , hydrogen chloride (a gas) has been dissolved in $1 \mathrm{dm}^{3}$ of water.

The dm^{3} is a cubic decimetre, it is actually 1 litre, but from this point on as an A level chemist you will use the dm^{3} as your volume measurement.
http://bit.ly/pixlchem10
http://www.docbrown.info/page04/4 73calcs11msc.htm
Q7.1

a) What is the concentration (in mol dm ${ }^{-3}$) of 9.53 g of magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$ dissolved in $100 \mathrm{~cm}^{3}$ of water?
b) What is the concentration (in mol dm ${ }^{-3}$) of 13.248 g of lead nitrate $\left(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\right)$ dissolved in $2 \mathrm{dm}^{3}$ of water?
c) If I add $100 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{3} \mathrm{HCl}$ to $1.9 \mathrm{dm}^{3}$ of water, what is the molarity of the new solution?
d) What mass of silver is present in $100 \mathrm{~cm}^{3}$ of $1 \mathrm{moldm}^{-3}$ silver nitrate $\left(\mathrm{AgNO}_{3}\right)$?
e) The Dead Sea, between Jordan and Israel, contains 0.0526 moldm $^{-3}$ of Bromide ions (Br^{-}), what mass of bromine is in $1 \mathrm{dm}^{3}$ of Dead Sea water?
partners in excellence

Chemistry topic 6 - Organic chemistry - functional groups

At GCSE you would have come across hydrocarbons such as alkanes (ethane etc) and alkenes (ethene etc). You may have come across molecules such as alcohols and carboxylic acids. At A level you will learn about a wide range of molecules that have had atoms added to the carbon chain. These are called functional groups, they give the molecule certain physical and chemical properties that can make them incredibly useful to us.

Here you are going to meet a selection of the functional groups, learn a little about their properties and how we give them logical names.

You will find a menu for organic compounds here:
http://bit.ly/pixichem13

http://www.chemguide.co.uk/orgpropsmenu.html\#top
And how to name organic compounds here:

http://bit.ly/pix|chem14

http://www.chemguide.co.uk/basicorg/conventions/names.html\#top

Using the two links see if you can answer the following questions:
Q9.1 Halogenoalkanes
What is the name of this halogenoalkane?

How could you make it from butan-1-ol?

Q9.2 Alcohols

How could you make ethanol from ethene?
How does ethanol react with sodium, in what ways is this a) similar to the reaction with water, b) different to the reaction with water?

Q9.3 Aldehydes and ketones
Draw the structures of a) propanal b) propanone
How are these two functional groups different?
partners in excellence

Pre-Knowledge Topics Answers to problems

Q1.1a) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$
b) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$
c) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
d) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
e) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
f) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2}$
g) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3} 4 s^{2}$
h) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8} 4 s^{2}$
i) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1}$
j) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2}$
k) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{3}$
Q1.2a) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
b) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
c) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10}$
d) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
e) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{7}$
Q2.1 a) +4
b) +6
c) +5
d) +4
e) +3
f) +5
g) +7
h) +6
i) +4

Q3.1 They must be ionised / turned into ions
Q3.2 The ions are all given the same amount of kinetic energy, as $K E=1 / 2 \mathrm{mv}^{2}$ the lighter ions will have greater speed / heavier ions will have less speed.
Q3.3
a) 121.855
b) 67.796
c) 107.973
d) 204.41
e) $87.710 / 87.7102$

Q4.1
a)

120°
b)

107°
c)

109.5°
Q5a. $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
f. $\mathrm{C}_{10} \mathrm{H}_{16}+8 \mathrm{Cl}_{2} \rightarrow \quad 10 \mathrm{C}+16 \mathrm{HCl}$
b. $\mathrm{S}_{8}+1202 \rightarrow 8 \mathrm{SO}_{3}$
g. $2 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow \quad 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$
c. $2 \mathrm{HgO} \rightarrow 2 \mathrm{Hg}+\mathrm{O}_{2}$
h. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow \quad 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
d. $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \quad \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
i. $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{Fe}+3 \mathrm{H}_{2} \mathrm{O}$
e. $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$
j. $2 \mathrm{Al}+3 \mathrm{FeO} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{Fe}$

Q6.1
a) $85.2 / 284=0.3$ moles
b) $73.56 / 122.6=0.6$ moles
c) $249.5 / 249.5=1.0$ moles
partners in excellence
d) $0.125 \times 212.8=26.6 \mathrm{~g} \quad$ e) $2 \mathrm{Mg}: 20$ or $1: 1$ ratio 2.4 g of $\mathrm{Mg}=0.1$ moles so we need 0.1 moles of oxygen $\left(\mathrm{O}_{2}\right): 0.1 \times 32=3.2 \mathrm{~g}$
7.1 a) $9.53 \mathrm{~g} / 95.3=0.1$ moles, in $100 \mathrm{~cm}^{3}$ or $0.1 \mathrm{dm}^{3}$ in $1 \mathrm{dm}^{3} 0.1$ moles $/ 0.1 \mathrm{dm}^{3}=1.0 \mathrm{~mol} \mathrm{dm}^{-3}$
b) $13.284 \mathrm{~g} / 331.2=0.04$ moles, in $2 \mathrm{dm}^{3} \quad$ in $1 \mathrm{dm}^{3} 0.04$ moles $/ 2 \mathrm{dm}^{3}=0.02 \mathrm{~mol} \mathrm{dm}^{-3}$
c) $100 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}=0.01$ moles added to a total volume of $2 \mathrm{dm}^{3}=0.01 \mathrm{moles} / 2 \mathrm{dm}^{3}=0.005 \mathrm{~mol} \mathrm{dm}^{-3}$
d) in $1 \mathrm{dm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ silver nitrate, 1 mole of $\mathrm{Ag}=107.9 \mathrm{~g}$ in $0.1 \mathrm{dm}^{3}=107.9 \times 0.1=10.79 \mathrm{~g}$
e) $0.0526 \times 79.7=42.0274 \mathrm{~g}$
8.1
$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}: \mathrm{Na}_{2} \mathrm{SO}_{4}$
1 : 1 ratio
$12.5 \mathrm{~cm}^{3}$ of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}=0.0125 \mathrm{dm}^{3}$
$0.15 \mathrm{moldm}^{-3} \times 0.0125 \mathrm{dm}^{3}=0.001875$ moles
same number of moles of sodium sulfate needed, which has a concentration of $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$
0.001875 moles $/ 0.25 \mathrm{~mol} \mathrm{dm}^{-3}=0.0075 \mathrm{dm}^{3}$ or $7.5 \mathrm{~cm}^{3}$

9.1 1-chlorobutane

Add butan-1-ol to concentrated HCl and shake
9.2 react ethene with hydrogen gas at high temperature and pressure with a nickel catalyst

The reaction is similar in that it releases hydrogen but different as it proceeds much slower than in
water
9.3
propanal

The carbon atom joined to oxygen in propanal has a hydrogen attached to it, it does not in propanone.
10.1 An acid is a proton donor
10.2 Ammonia can accept a proton, to become $\mathrm{NH}_{4}{ }^{+}$
10.3 ethanoic acid has not fully dissociated, it has not released all of its hydrogen ions into the solution.
$\mathrm{CH}_{3} \mathrm{COOH} \leftrightharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$
Mostly this Very few of these
$10.4 \mathrm{pH}=-\log [0.01]=2 \quad$ The $\mathrm{pH}=2$

Standard form and significant figures

Specification references

- MS 0.1 Recognise and use expressions in standard and ordinary form
- MS 0.4 Use calculators to find and use power, exponential and logarithmic functions
- MS 1.1 Use an appropriate number of significant figures

Learning objectives

After completing the worksheet you should be able to:

- convert between numbers in standard and ordinary form
- state numbers to a certain degree of accuracy.

I ntroduction

In the calculations you will be asked to perform as part of your AS studies you will need to be confident with both representing numbers in standard form and giving them to a certain number of significant figures.
When numbers are very large or very small they are written in standard form. In standard form a number is written in the format:

$$
a \times 10^{n} \text { where } 1 \leq a<10 \text { and } n \text { is an integer. }
$$

In an experiment, or from a calculation, you may only be able to give your answer with a certain amount of accuracy. This accuracy is shown by giving your answer to a certain number of significant figures.

Worked example: Standard form
Question
Express 0.00268 in standard form.

Answer

Step 1
Identify the value for 'a.' In this case it will be 2.68 .
Step 2
Work out how many places the decimal place must be moved to form this number.

$$
0.00268
$$

The decimal place must move 3 places to the right to become 2.68.
This number of places is the value for the integer ' n.' If the decimal point moves to the right ' n ' is negative. If the decimal place moves to the left ' n ' is positive.

Step 3

Substitute your values into the general format, $a \times 10^{n}$
Therefore in standard form 0.00268 is 2.68×10^{-3}.

Worked example: Significant figures

Question

Express 0.56480900 to 3 significant figures.

Answer

Step 1
Identify the numbers which are significant using the rules below:
Rule 1 Any number that isn't 0 is significant.
Rule 2 Any 0 that is between two numbers that are not 0 is significant.
Rule 3 Any 0 that is before all the non-zero digits is not significant.
Rule 4 Any 0 that is after all of the non-zero digits is only significant if there is a decimal point.
In this case the significant numbers are 0.56480900.
Step 2
Identify the three most significant figures. These are the significant numbers which are furthest to the left (have the biggest values), i.e., 0.56480900.
Step 3
Look at the next number. If this number is 5 or above, then round up. If this number is 4 or less, do not round up.
In this case the next number is 8 , so we round up to 0.565 .

Questions

1 This question is about expressing numbers in standard form.
a Express the following numbers in standard form.
i 0.0023
ii 1032
iii 2750000
iv 0.000528
b Write out the following numbers in ordinary form.
i 2.01×10^{3}
ii 5.2×10^{-2}
iii 8.41×10^{2}
iv 1.00×10^{-4}
c For each of the pairs of numbers below identify which is the bigger number.

$$
\begin{array}{ll}
\text { i } & 1.43 \times 10^{23} \text { or } 1.43 \times 10^{24} \\
\text { ii } & 5.16 \times 10^{-3} \text { or } 5.16 \times 10^{-4} \\
\text { iii } & 12.4 \times 10^{23} \text { or } 1.50 \times 10^{24}
\end{array}
$$

2 Express the following numbers to the number of significant figures indicated.
a 4.74861 to two significant figures
b 507980 to three significant figures
c 809972 to three significant figures
d 06.345 to three significant figures
e 7840 to three significant figures
f 0.007319 to three significant figures
3 Carry out the following calculations expressing the numbers in standard form to the degree of accuracy indicated:
a $\left(4.567 \times 10^{5}\right) \times\left(2.13 \times 10^{-3}\right)$ to three significant figures
b $\left(1.567 \times 10^{3}\right) \div\left(2.245 \times 10^{-1}\right)$ to four significant figures
c $\left(5.4 \times 10^{-1}\right) \div\left(2.7 \times 10^{-3}\right)$ to one significant figure
d $\left(2.00 \times 10^{-2}\right) \times\left(2.00 \times 10^{-4}\right)$ to three significant figures

Maths skills links to other areas

You will use these skills throughout the Amount of substance topics.

Answers

1 a i 2.3×10^{-3}
(1 mark)
ii 1.032×10^{3}
iii 2.75×10^{6}
(1 mark)
iv 5.28×10^{-4}
(1 mark)
$\begin{array}{lll}\text { b } & \text { i } & 2010 \\ & \text { ii } & 0.052\end{array}$
$\begin{array}{lll}\text { b } & \text { i } & 2010 \\ & \text { ii } & 0.052\end{array}$
(1 mark)
(1 mark)
iii 841
iv 0.0001
(1 mark)
c i 1.43×10^{24}
ii 5.16×10^{-3}
iii 1.50×10^{24}
(1 mark)
(1 mark)
(1 mark)
(1 mark)
(1 mark)
2
a 4.7
(1 mark)
b 508000
(1 mark)
c 810000
(1 mark)
d 6.35
(1 mark)
e 7840
f 0.00732
(1 mark)
(1 mark)

3 a 9.73×10^{2}
(1 mark)
b 6.980×10^{3}
(1 mark)
c 2×10^{2}
(1 mark)
d 4.00×10^{-6}
(1 mark)

Rates and order of reaction, rate-determining steps, and reaction mechanisms

Specification references

- 3.1.9
- MS0.0
- MS2.2, 2.3, 2.4
- MS3.3, 3.4

Maths Skills for Chemistry references

- 6.4 Rates by inspection 1
- 6.5 Rates by inspection 2

Learning outcomes

After completing this worksheet, you should be able to:

- calculate the order of reaction for any reactant in a reaction
- write the rate equation for a reaction
- calculate the change in rate when the concentrations of the reactants in a rate equation are changed
- calculate the rate constant for a reaction and give its units
- link the rate equation with the mechanism of the reaction, and for some examples work out the mechanism.

I ntroduction

The equation that gives the relationship between the rate of reaction and the concentrations of the various reactants involved is called the rate equation.
For example:

$$
\text { rate }=k[\mathbf{A}]^{a}[\mathbf{B}]^{b}[\mathbf{C}]^{c}
$$

In this equation, a is the order of reaction with respect to reactant \mathbf{A}, b is the order of reaction with respect to reactant \mathbf{B}, and c is the order of reaction with respect to the reactant \mathbf{C}. The overall order of the reaction $\square a+b+c . k$ is the rate constant. This is constant at any given temperature, but increases as temperature increases.
If a equals zero, then the order of reaction with respect to reactant \mathbf{A} is zero order. If $a \square 1$, then it is first order with respect to A etc. When you are calculating the order of reaction from a table of data, there are some basic principles you must remember.

Order of reaction	What does it mean?
Zero order	[reactant $]^{0} \square 1$. This means that the rate of the reaction does not depend on the concentration of the reactant. For example, if the concentration of the reactant is doubled, then there is no effect on the rate.
First order	This means that the rate of the reaction is proportional to the concentration of the reactant. Therefore, if the concentration of the reactant is doubled, then the rate will double.
Second order	This means that the rate of the reaction is proportional to [reactant $]^{2}$. Therefore, if the concentration of the reactant is doubled, then the rate is increased fourfold. If the concentration of the reactant is trebled, then the rate of the reaction is increased ninefold.

If you have a rate equation where, for example, rate $=k[\mathbf{A}][\mathbf{B}]^{2}[\mathbf{C}]$ and \mathbf{A} is doubled,
\mathbf{B} is also doubled, and \mathbf{C} is trebled, then the effect on the rate is:

$$
\frac{\text { rate } 2}{\text { rate } 1}=\frac{k[2 A][2 B]^{2}[3 C]}{k[A][B]^{2}[C]}=2 \times 4 \times 3=24
$$

and therefore the rate is increased by a factor of 24.
The rate equation gives information about the mechanism of the reaction. For example, in the reaction involving the reactants \mathbf{A}, \mathbf{B}, and \mathbf{C}, we can say that the rate-determining step in the equation, which is the slowest step, involves one molecule of A, two molecules of B, and one molecule of \mathbf{C}.

Worked example

Question

The data in the table below shows the effect of the concentration of three reactants
(\mathbf{A}, \mathbf{B}, and \mathbf{C}) on the rate of a reaction. Use this data to:
a calculate the order of reaction with respect to each reactant
b write the overall rate equation
c calculate the value of the rate constant, k, and give its units
d calculate the effect on the rate if the concentration of all three reactants is increased fourfold.

Experiment	$\begin{gathered} {[\mathrm{A}] / /} \\ \mathrm{mol} \mathrm{dm}^{-3} \end{gathered}$	$\begin{gathered} [\mathrm{B}] /] \\ \mathrm{mol} \mathrm{dm}^{-3} \end{gathered}$	$\begin{gathered} {[\mathrm{C}] /} \\ \mathrm{mol} \mathrm{dm}^{-3} \end{gathered}$	Rate $/ \mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{~s}^{-1}$
1	1×10^{-3}	1×10^{-3}	1×10^{-3}	5×10^{-6}
2	2×10^{-3}	1×10^{-3}	1×10^{-3}	1×10^{-5}
3	2×10^{-3}	2×10^{-3}	1×10^{-3}	1×10^{-5}
4	1×10^{-3}	1×10^{-3}	3×10^{-3}	4.5×10^{-5}

Answer

a Step 1: Start with reactant A and choose two experiments where its concentration has changed, but the concentrations of the other reactants have not.
This means that we must use experiments 1 and 2 . In these two experiments the concentration of \mathbf{A} has doubled, and so has the rate as:

$$
\frac{1 \times 10^{-5}}{5 \times 10^{-6}}=2
$$

Therefore, the reaction is first order with respect to \mathbf{A}.
Step 2: Repeat with reactant B. The only two experiments where B changes are experiments 1 and 3 , but so does the concentration of \mathbf{A}. Comparing Experiment 1 to Experiment 3, the concentration of \mathbf{A} doubles and so does the rate. But we already know that the reaction is first order with respect to \mathbf{A} and this doubling of the rate must be due to the doubling of the concentration of \mathbf{A}.
Therefore, changing the concentration of \mathbf{B} has no effect on the rate, and the rate of the reaction is zero order with respect to \mathbf{B}.
Step 3: For reactant C, we can use experiments 1 and 4. Here the concentration of \mathbf{C} trebles, and the rate of the reaction increases nine times. Therefore, the order of reaction is second order with respect to \mathbf{C}.
b Write the rate equation.

$$
\text { rate }=k[\mathbf{A}]^{1}[\mathbf{B}]^{0}[\mathbf{C}]^{2}=k[\mathbf{A}][\mathbf{C}]^{2} \quad \text { (either expression is correct) }
$$

c To calculate the rate constant and its units, rearrange the rate equation:

$$
k=\frac{\text { rate }}{[\mathbf{A}][\mathbf{C}]^{2}}
$$

Now choose one of the experiments and use the data from that experiment. If we choose Experiment 1, then the following equation applies:

$$
\begin{aligned}
k & =\frac{5 \times 10^{-6}}{10^{-3} \times\left(10^{-3}\right)^{2}} \\
& =\frac{5 \times 10^{3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}}{\mathrm{~mol} \mathrm{dm}^{-3} \times\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{2}} \\
& =5 \times 10^{3} \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}
\end{aligned}
$$

It does not matter in which order you write the units, but the convention is to put positive powers first.
d When calculating the effect on the rate of increasing all the concentrations fourfold:

- as the reaction is first order with respect to \mathbf{A}, increasing the concentration of \mathbf{A} by a factor of four also increases the rate by a factor of four

Chemistry

- as the reaction is second order with respect to \mathbf{C}, increasing the concentration of \mathbf{C} by a factor of four increases the rate by a factor of 4^{2} or 16.

Taking both these factors into consideration, we can see that the rate is increased by a factor of 4×16 or 64 .

Questions

1 Two substances, \mathbf{P} and \mathbf{Q}, react together: $\mathbf{P}+\mathbf{Q} \rightarrow$ products.
The data in the table below shows how the rate of the reaction depends on the concentrations of \mathbf{P} and \mathbf{Q}.

Experiment	$[\mathrm{P}] /$ $\mathbf{m o l ~ d m}^{\mathbf{3}}$	$[\mathrm{Q}] /$ $\mathbf{m o l ~ d m}^{\mathbf{3}}$	Ratel $\mathbf{m o l ~ d m}^{\mathbf{- 3}} \mathbf{s}^{\mathbf{1}}$
1	2.00×10^{-3}	2.50×10^{-3}	6.6×10^{-6}
2	4.00×10^{-3}	2.50×10^{-3}	1.32×10^{-5}
3	2.00×10^{-3}	6.25×10^{-3}	1.65×10^{-5}

a Calculate the order of reaction with respect to both \mathbf{P} and \mathbf{Q}.
\qquad
\qquad
\qquad
\qquad
b Write the rate equation for the reaction.
\qquad
c Calculate the value of the rate constant and give its units.
\qquad
\qquad
\qquad

Rates and order of reaction

Chemistry

d Calculate the effect on the rate if the concentrations of both \mathbf{P} and \mathbf{Q} are doubled.
\qquad
\qquad

2 Three substances, \mathbf{X}, \mathbf{Y} and \mathbf{Z}, undergo a chemical reaction. The data in the table below shows how the rate of the reaction depends on the concentrations of all three reactants.

Experiment	$[\mathrm{X}] /$ $\mathbf{m o l ~ d m}^{\mathbf{- 3}}$	$[\mathrm{Y}] / \mathrm{l}$ $\mathbf{m o l ~ d m}^{\mathbf{3}}$	$[\mathrm{Z}] /$ $\mathbf{m o l ~ d m}^{\mathbf{3}}$	Ratel $\mathbf{m o l ~ d m}^{\mathbf{3}} \mathbf{s}^{\mathbf{- 1}}$
1	0.032	0.020	0.030	2.64×10^{-7}
2	0.064	0.020	0.030	1.06×10^{-6}
3	0.064	0.040	0.030	2.11×10^{-6}
4	0.032	0.020	0.060	5.28×10^{-7}

a Calculate the order of reaction with respect to \mathbf{X}, \mathbf{Y}, and \mathbf{Z}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b Write the rate equation for the reaction.
\qquad
c Calculate the value of the rate constant and give its units.
\qquad
\qquad
\qquad
d Calculate the effect on the rate if the concentrations of \mathbf{X} and \mathbf{Y} are doubled, and the concentration of \mathbf{Z} is trebled.
\qquad
\qquad
\qquad
\qquad

3 Hydrogen and nitrogen monoxide react together as follows:

$$
2 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})
$$

The rate equation for the reaction is:
rate $=k\left[\mathrm{H}_{2}\right][\mathrm{NO}]^{2}$
a What happens to the rate of this reaction if the following changes take place:
i [NO] and $\left[\mathrm{H}_{2}\right]$ are both doubled
\qquad
\qquad
ii [NO] is halved and $\left[\mathrm{H}_{2}\right]$ is unchanged?
\qquad
\qquad
b The reaction mechanism consists of two steps. The first step is the ratedetermining step. Use the data to write the mechanism.
\qquad
\qquad
\qquad
4 2-bromo-2-methylpropane, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$, and iodide ions react as follows:

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+\mathrm{I}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}+\mathrm{Br}^{-}
$$

The data below shows how the rate of the reaction depends on the concentrations of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ and I^{-}.

Experiment	$\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]$ $\mathrm{mol} \mathrm{dm}^{-3}$	$\left[\mathrm{I}^{-}\right]$ $\mathbf{m o l ~ d m}^{-3}$	Ratel $\mathrm{mol} \mathrm{dm}^{-3} \mathbf{s}^{-1}$
1	0.016	0.020	1×10^{-6}
2	0.048	0.020	3×10^{-6}
3	0.048	0.060	3×10^{-6}
4	0.064	0.060	4×10^{-6}

a Calculate the order of the reaction with respect to the concentrations of 2-bromo-2-methylpropane and the iodide ions.
\qquad
\qquad
\qquad
\qquad
\qquad
b Calculate the rate constant for the reaction and give its units.
\qquad
\qquad
\qquad
c Give the mechanism for the reaction.
\qquad
\qquad
\qquad

Maths skills links to other areas

Calculating ratios comes into many areas of quantitative chemistry. For example, the redox chemistry of manganate(VII) requires the use of ratios in calculating the number of moles of each substance in the reaction. Calculating units is important with equilibrium constants.

Answers

1 a Using experiments 1 and 2, doubling [$\mathbf{P}]$ doubles the rate (1 mark).
Therefore, the reaction is first order with respect to \mathbf{B} (1 mark).
Using experiments 1 and 3 , increasing [\mathbf{Q}] by 2.5 times increases the rate by 2.5 times (1 mark). Therefore, reaction is first order with respect to \mathbf{Q} (1 mark).
b \quad Rate $=k[\mathbf{P}][\mathbf{Q}]$
c $k=\frac{\text { rate }}{[\mathbf{P}][\mathbf{Q}]}=\frac{6.6 \times 10^{-6}}{2 \times 10^{-3} \times 2.5 \times 10^{-3}}=1.32(2 \mathrm{marks})$
Units $=\frac{\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}}{\mathrm{~mol} \mathrm{dm}^{-3} \times \mathrm{mol} \mathrm{dm}^{-3}}=\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ (1 mark)
d Doubling [P] doubles the rate and doubling [Q] also doubles the rate (1 mark). Therefore, rate increases by $2 \times 2=4$ times (1 mark).

2 a Using experiments 1 and 2, doubling [$\mathbf{X}]$ quadruples the rate (1 mark). Therefore, the reaction is second order with respect to \mathbf{X} (1 mark).
Using experiments 1 and 3 , both $[\mathrm{X}]$ and $[\mathrm{Y}]$ are doubled and the rate increases eightfold. Doubling $[\mathrm{X}]$ quadruples the rate and therefore, doubling $[\mathrm{Y}]$ leads to a doubling in the rate (1 mark), and so the reaction is first order with respect to \mathbf{Y} (1 mark).
Using experiments 1 and 4, doubling [Z] also doubles the rate (1 mark) and therefore, reaction is first order with respect to \mathbf{Z} (1 mark).
b Rate $=k[\mathbf{X}]^{2}[\mathbf{Y}][\mathrm{Z}]$
c Rearranging the equation, and then using the data in Experiment 1:

$$
\begin{aligned}
k=\frac{\text { rate }}{[X]^{2}[Y][Z]} & =\frac{2.64 \times 10^{-7}}{(0.032)^{2}(0.02)(0.03)} \\
& =0.430(2 \text { marks })
\end{aligned}
$$

The units are $\frac{\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}}{\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{2}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)}=\frac{\mathrm{s}^{-1}}{\left(\mathrm{moldm}^{-3}\right)^{3}}=\mathrm{dm}^{9} \mathrm{~mol}^{-3} \mathrm{~s}^{-1}(1$ mark)
d Doubling [X] quadruples the rate (1 mark). Doubling [Y] doubles the rate (1 mark). Trebling [Z] trebles the rate (1 mark). Overall change in rate $=4 \times 2 \times$ 3 = 24 times (1 mark).

3 a i Doubling [NO] quadruples the rate. Doubling $\left[\mathbf{H}_{2}\right]$ doubles the rate (1 mark). Therefore, rate increases eightfold (1 mark).
ii Halving [NO] changes the rate $\frac{1}{2} \times \frac{1}{2}$ times (1 mark) $=\frac{1}{4}$ times (1 mark)
b $2 \mathrm{NO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})(1$ mark) rate-determining step
$\mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{N}_{2}(\mathrm{~g})(2$ marks $)$
Note, the rate-determining step involves the two substances in the rate equation, and there are two molecules of $\mathrm{N}_{2} \mathrm{O}$ because the rate is second order with respect to NO , and one molecule of H_{2} because the rate is first order with respect to H_{2}.
If both sides of the equations are added we get:
$2 \mathrm{NO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{N}_{2}(\mathrm{~g})$
$2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{N}_{2}(\mathrm{~g})$
The $\mathrm{N}_{2} \mathrm{O}$ is an intermediate in the reaction.
4 a Using experiments 1 and 2, if $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathbf{C B r}\right]$ trebles then the rate trebles (1 mark), therefore, the reaction is first order with respect to $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ (1 mark).

Using experiments 2 and 3 , if $\left[I^{-}\right]$is trebled there is no effect on rate (1 mark) and therefore, reaction is zero order with respect to I^{-}(2 marks).
b rate $=k\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right] \quad k=\frac{\text { rate }}{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]}(1$ mark $)$
Using experiment 1: $k=\frac{1 \times 10^{-6}}{0.016}=6.25 \times 10^{-5} \frac{\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}}{\mathrm{~mol} \mathrm{dm}^{-3}}(1$ mark $)$

$$
=6.25 \times 10^{-5} \mathrm{~s}^{-1}(1 \text { mark })
$$

c $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}(1$ mark $) \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+\mathrm{Br}^{-}$(1 mark) is the rate-determining step Rate-determining step involves just $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+\mathrm{I}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCI}$ (1 mark)

Calculations involving dissociation constants and pH values of weak acids

Specification references

- 3.1.12
- MS0.0, 0.1, 0.4,
- MS2.1, 2.2, 2.3, 2.4, 2.5

Maths Skills for Chemistry references

- 7.5 Calculating pH
- 7.6 The acid dissociation constant

Learning outcomes

After completing the worksheet, you should be able to:

- use the logarithmic expressions for pH and hydrogen ion concentration
- derive equations to work out the pH and hydrogen ion concentration of a weak acid
- use the expressions for pH , hydrogen ion concentration, and $\mathrm{p} K_{\mathrm{a}}$ in calculations.

I ntroduction

The pH of an acid is related to its $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ by the expression:

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}(\mathrm{aq})\right]
$$

For example, calculate the pH of a solution of $0.0001 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid.
$\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ and $\left[\mathrm{H}^{+}(\mathrm{aq})\right]=0.0001$
When you use your calculator to find the pH value, you press the [log] button on your calculator, type in the number and then press [=]. Therefore $\mathrm{pH}=-\log _{10}$ $(0.0001)=-(-4)=4$
Another expression that you will use is:

$$
\begin{equation*}
\left[\mathrm{H}^{+}(\mathrm{aq})\right]=10^{-\mathrm{pH}} \tag{B}
\end{equation*}
$$

For example, what is the $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ of an acid solution with a pH of 2.4. When you use your calculator to find $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ using expression \mathbf{B}, you press the [SHIFT] button followed by the [log] button, and then the number. In this example you will get $10^{-2.4}$ and the answer $3.98 \times 10^{-3} .\left[\mathrm{H}^{+}(\mathrm{aq})\right]=10^{-2.4}$
When you work out the pH of strong acids and bases, we can assume that they are fully dissociated in aqueous solution. For example, $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ of hydrochloric acid has a hydrogen ion concentration of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$, because in aqueous solution all of the HCl molecules are dissociated into hydrogen and chloride ions.

Weak acids by definition are only partially dissociated in aqueous solution.
Therefore, if you know the concentration of the weak acid, you do not automatically know the concentration of the hydrogen ions produced by its dissociation. To overcome this problem you have to use a model which in this case is a weak acid represented by the formula, HA. In aqueous solution, HA dissociates as follows:

$$
\mathrm{HA}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})
$$

The equilibrium constant for this reaction is called the acid dissociation constant, K_{a}. K_{a} is written as follows:

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]_{\mathrm{eqm}}\left[\mathrm{~A}^{-}(\mathrm{aq})\right]_{\mathrm{eqm}}}{[\mathrm{HA}(\mathrm{aq})]_{\mathrm{eqm}}} \text { Units are mol } \mathrm{dm}^{-3}
$$

In this form we cannot use this expression because we do not know the values of $\left[\mathrm{H}^{+}(\mathrm{aq})\right]_{\text {eqm }},\left[\mathrm{A}^{-}(\mathrm{aq})\right]_{\text {eqm }}$ and $[\mathrm{HA}(\mathrm{aq})]_{\text {eqm }}$.
But we do know that $\left[\mathrm{H}^{+}(\mathrm{aq})\right]_{\text {eqm }}=\left[\mathrm{A}^{-}(\mathrm{aq})\right]_{\text {eqm }}$, because in the equilibrium there are equal numbers of both these ions. This means that the expression for K_{a} can be rewritten as:

$$
\begin{equation*}
K_{a}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]_{\text {eqm }}^{2}}{[\mathrm{HA}(\mathrm{aq})]_{\text {eqm }}} \mathrm{mol} \mathrm{dm}^{-3} \tag{A}
\end{equation*}
$$

Also, since weak acids are only partially dissociated, then the $[\mathrm{HA}(\mathrm{aq})]$ has hardly changed in value and $[\mathrm{HA}(\mathrm{aq})]_{\text {eqm }} \sim[\mathrm{HA}(\mathrm{aq})]_{\text {start }}$.
Therefore, $K_{a}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]_{\text {eqm }}^{2}}{[\mathrm{HA}(\mathrm{aq})]_{\text {start }}}$
Rearranging this equation, we have $\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{2}{ }_{\text {eqm }}=K_{\mathrm{a}} \times[\mathrm{HA}(\mathrm{aq})]_{\text {start }}$
And if we square root both sides

$$
\left[\mathrm{H}^{+}(\mathrm{aq})\right]_{\mathrm{eqm}}=\sqrt{\left(K_{\mathrm{a}} \times[\mathrm{HA}(\mathrm{aq})]_{\mathrm{start}}\right)}
$$

B
Another expression that you will need to know is $\mathrm{p} K_{\mathrm{a}}$.

$$
p K_{a}=-\log _{10} K_{\mathrm{a}}
$$

B
This is a useful expression because it gives you some idea of the strength of an acid. The higher the value of $\mathrm{p} K_{\mathrm{a}}$, the weaker the acid:

$$
\text { and } K_{\mathrm{a}}=10^{-\mathrm{p} K_{\mathrm{a}}}
$$

C

Worked example

Question

The $\mathrm{p} K_{\mathrm{a}}$ of a weak acid, HA , is 5.6.
a Calculate its K_{a}.
b Calculate the pH of a solution of HA with a concentration of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$.

Answer

Step 1
$K_{\mathrm{a}}=10^{-\mathrm{p} K_{\mathrm{a}}}=2.51 \times 10^{-6}$
Step 2
$\left[\mathrm{H}^{+}\right]^{2}=K_{\mathrm{a}} \times[\mathrm{HA}]_{\text {start }}$ and $\left[\mathrm{H}^{+}(\mathrm{aq})\right]_{\text {eqm }}=\sqrt{K_{\mathrm{a}} \times[\mathrm{HA}(\mathrm{aq})]_{\text {start }}}$
$=\sqrt{\left(2.51 \times 10^{-6} \times 0.100\right)}=5.01 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathrm{pH}=-\log _{10} 5.01 \times 10^{-4}=3.3$

Questions

1 Calculate the pH for each of the following weak acid solutions.

	$\mathbf{p} K_{\mathbf{a}}$	Concentration $\mathbf{m o l ~ d m}^{-3}$
\mathbf{a}	4.8	0.02
\mathbf{b}	6.7	9.94×10^{-5}
\mathbf{c}	3.5	0.010
\mathbf{d}	4.92	0.100

2 Calculate the $\mathrm{p} K_{\mathrm{a}}$ for each of the following weak acid solutions.

	$\mathbf{p H}$	Concentration $\mathbf{m o l ~ d m}^{-3}$
\mathbf{a}	5.2	0.01
\mathbf{b}	2.8	0.003
\mathbf{c}	36.7	0.02
\mathbf{d}	4.3	0.105

Maths skills links to other areas

Logarithms are used in finding activation energy values from the Arrhenius equation. They can also be used in resolving the order of reaction from concentration-rate data.

Oxford A Level Sciences

Chemistry
Using logarithmic functions
Calculations

Answers

These answers include values that are part of the calculations on the way to the final answer. It may help the students identify where they may be going wrong.
Award 1 mark for each of the correct steps shown in the answer tables. Therefore for Question 1 there are 12 marks and the same for Question 2.
1.

Question	$K_{\mathrm{a}} / \mathrm{mol} \mathrm{dm}^{-3}$	$\left[\mathbf{H}^{+}(\mathrm{aq})\right] / \mathrm{mol} \mathrm{dm}^{-3}$	$\mathbf{p H}$
a	1.58×10^{-5}	5.62×10^{-4}	3.25
b	2×10^{-7}	1.41×10^{-5}	4.84
c	3.16×10^{-4}	1.78×10^{-3}	2.75
d	1.20×10^{-5}	1.10×10^{-3}	2.96

2.

Question	$\left[\mathbf{H}^{+}(\mathbf{a q})\right] / \mathrm{mol} \mathrm{dm}^{-3}$	$\boldsymbol{K}_{\mathrm{a}} / \mathbf{m o l ~ d m}^{-3}$	$\mathbf{p} K_{\mathbf{a}}$
a	6.31×10^{-6}	3.98×10^{-9}	8.4
b	1.58×10^{-3}	8.37×10^{-4}	3.08
c	2×10^{-7}	2×10^{-12}	11.7
d	5.01×10^{-5}	2.39×10^{-8}	7.62

Ratios and amount of substance

Specification reference

- 3.1.2
- MS 0.2 Use ratios, fractions and percentages
- MS 1.1 Use an appropriate number of significant figures
- MS 2.2 Change the subject of an equation

Maths Skills for Chemistry references

- 1.2 Amount of substance

Learning objectives

After completing this worksheet you should be able to:

- use ratios from balanced chemical equations to calculate reacting masses
- state the answers to calculations to an appropriate number of significant figures.

I ntroduction

When an equation is balanced it gives us information about the amount of substances that react together and that are produced.
For example, look at the balanced equation for the reaction between magnesium and hydrochloric acid;

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

From the equation we know that 1 mol of Mg reacts with 2 mol of HCl to give 1 mol of MgCl_{2} and 1 mol of H_{2} gas. The magnesium reacts with the acid in a 1:2 molar ratio.
You'll notice that the total number of moles of reactant does not equal the total number of moles of product. This is because some species may contain more moles of certain atoms than others. For example, 1 mol of HCl contains 1 mol of Cl atoms whereas 1 mol of MgCl_{2} contains 2 mol of Cl atoms. When balancing an equation we balance the number of individual atoms.

Worked example

Question

Calculate the mass of carbon monoxide needed to produce 11.2 g of iron from the reduction of iron oxide. The equation for the reaction is given below.
$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$

Answer

Step 1
Calculate the number of moles in 11.2 g of iron;
Moles $=\frac{11.2 \mathrm{~g}}{55.8 \mathrm{~g} \mathrm{~mol}^{-1}}=0.2007 \mathrm{~mol}$
Note: Carry intermediate numbers through as accurately as you can and where possible use the 'Ans' function on your calculator. In this example intermediate values have been written down to one significant figure more than you are going to give the final answer to, but have been carried through on the calculator using the 'Ans' function.

Step 2

Use ratios to determine the number of moles of carbon monoxide required to produce this number of moles of iron. The ratio of CO to Fe is:

$$
3 \mathrm{~mol} \mathrm{CO}: 2 \mathrm{~mol} \text { of } \mathrm{Fe}
$$

Divide both sides by 2 to find out how much CO is needed for 1 mol of Fe :

$$
1.5 \mathrm{~mol} \mathrm{CO}: 1 \mathrm{~mol} \mathrm{Fe}
$$

Multiply both sides by 0.2007 to find out how much CO is needed for 0.2007 mol of Fe:

$$
0.3011 \mathrm{~mol} \mathrm{CO}: 0.2007 \mathrm{~mol} \mathrm{Fe}
$$

Step 3
Convert the number of moles of CO into a mass of CO:

$$
0.3011 \mathrm{~mol}^{2} \times 28.0 \mathrm{~g} \mathrm{~mol}^{-1}=8.430 \mathrm{~g}=8.43 \mathrm{~g} \text { (to } 3 \text { significant figures) }
$$

Give your final answer to the same degree of accuracy as the least accurate value given in the question. In this case 3 significant figures.

Questions

1 Sodium hydrogen carbonate can be neutralised by an excess of sulfuric acid as shown by the equation below:

$$
2 \mathrm{NaHCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2}
$$

a Calculate the number of moles in 105 g of NaHCO_{3}.
b Hence calculate the amount in moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ which will be produced by the neutralisation of this sample of NaHCO_{3}.
c State the mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ which will therefore be produced by this sample of NaHCO_{3}.

2 Lead nitrate will react with potassium iodide in a very unusual solid-solid reaction. The equation for the reaction is:

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{KI} \rightarrow \mathrm{PbI}_{2}+2 \mathrm{KNO}_{3}
$$

Calculate the mass of lead iodide that will be produced by the reaction of 14.1 g of potassium iodide with an excess of lead nitrate.

3 Solid copper can be prepared from copper oxide by its reaction with ammonia. The equation for the reaction is:

$$
3 \mathrm{CuO}+2 \mathrm{NH}_{3} \rightarrow 3 \mathrm{Cu}+\mathrm{N}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

Calculate the mass of copper oxide which would react with 0.425 g of ammonia.
4 In a propane gas burner, the propane fuel undergoes complete combustion. Calculate the mass of oxygen required for the complete combustion of 62 g of propane.

5 Tin chloride exists as a hydrated salt. It can be dehydrated on heating:

$$
\mathrm{SnCl}_{2} \cdot \times \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SnCl}_{2}+\mathrm{xH}_{2} \mathrm{O}
$$

If during the dehydration of a sample of hydrated tin chloride, 118.6 g of anhydrous tin chloride and 22.5 g of water are produced, calculate the value of x and hence state the formula of hydrated tin chloride.

6 Zinc chloride exists as a hydrated salt. It can be dehydrated on heating;

$$
\mathrm{ZnCl}_{2} \cdot \mathrm{xH}_{2} \mathrm{O} \rightarrow \mathrm{ZnCl}_{2}+x \mathrm{H}_{2} \mathrm{O}
$$

If 19.4 g of water are produced by the dehydration of 56.2 g of the hydrated salt, calculate the value of x and hence state the formula of hydrated zinc chloride.

Maths skills links to other areas

You will also need to be able to use ratios appropriately during amount of substance calculations involving gases and solutions and when determining empirical formula.

Oxford A Level Sciences

Answers

1 a moles of $\mathrm{NaHCO}_{3}=\frac{105 \mathrm{~g}}{84.0 \mathrm{~g} \mathrm{~mol}^{-1}}=1.25 \mathrm{~mol}$
(1 mark)
b $2 \mathrm{NaHCO}_{3}: 1 \mathrm{Na}_{2} \mathrm{SO}_{4}, \therefore 1 \mathrm{NaHCO}_{3}: 0.5 \mathrm{Na}_{2} \mathrm{SO}_{4}$ and $\therefore 1.25 \mathrm{~mol} \mathrm{NaHCO}_{3}: 0.625 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}$
(1 mark)
c $0.625 \mathrm{~mol} \times 142.1 \mathrm{~g} \mathrm{~mol}^{-1}=88.81 \mathrm{~g}=88.8 \mathrm{~g}$ (to 3 significant figures)
2 No. of moles in 14.1 g of $\mathrm{KI}=\frac{14.1 \mathrm{~g}}{166.0 \mathrm{~g} \mathrm{~mol}^{-1}}=0.08494 \mathrm{~mol}$
(1 mark)
2KI : 1 Pbl_{2}, therefore moles of Pbl_{2} produced $=\frac{0.08494 \mathrm{~mol}}{2}=0.04247 \mathrm{~mol}$
Mass of PbI_{2} produced $=0.04247 \mathrm{~mol} \times 461.0 \mathrm{~g} \mathrm{~mol}^{-1}=19.57 \mathrm{~g}=19.6 \mathrm{~g}$ (to 3 significant figures)
(1 mark)

3 No. of moles in 0.425 g of $\mathrm{NH}_{3}=\frac{0.425 \mathrm{~g}}{17.0 \mathrm{~g} \mathrm{~mol}^{-\mathbf{1}}}=0.025 \mathrm{~mol}$
(1 mark)
$3 \mathrm{CuO}: 2 \mathrm{NH}_{3}$, therefore moles of CuO needed $=\frac{0.025}{2} \times 3=0.0375 \mathrm{~mol}$
(1 mark)
Mass of CuO needed $=0.0375 \mathrm{~mol} \times 79.5 \mathrm{~g} \mathrm{~mol}^{-1}=2.981 \mathrm{~g}=2.98 \mathrm{~g}$ (to 3 significant figures).
$4 \mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
No. of moles in 62 g of propane $=\frac{62 \mathrm{~g}}{44.0 \mathrm{~g} \mathrm{~mol}^{-1}}=1.409 \mathrm{~mol}$
$1 \mathrm{C}_{3} \mathrm{H}_{8}: 5 \mathrm{O}_{2}$, therefore moles of O_{2} needed $=1.409 \mathrm{~mol} \times 5=7.045 \mathrm{~mol}$
Mass of O_{2} needed $=7.045 \mathrm{~mol} \times 32.0 \mathrm{~g} \mathrm{~mol}^{-1}=225 \mathrm{~g}=230 \mathrm{~g}$ (to 2 significant figures).

5 No. of moles in 118.6 g of $\mathrm{SnCl}_{2}=\frac{118.6 \mathrm{~g}}{189.7 \mathrm{~g} \mathrm{~mol}^{-1}}=0.6252 \mathrm{~mol}$
No. of moles in 22.5 g of $\mathrm{H}_{2} \mathrm{O}=\frac{22.5 \mathrm{~g}}{18.0 \mathrm{~g} \mathrm{~mol}^{-1}}=1.25 \mathrm{~mol}$
If $1 \mathrm{SnCl}_{2}: \mathrm{x} \mathrm{H}_{2} \mathrm{O}=0.625 \mathrm{~mol} \mathrm{SnCl}_{2}: 1.25 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}=1 \mathrm{~mol} \mathrm{SnCl}_{2}: 2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ then $\mathrm{x}=2$
The formula for hydrated tin chloride is $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.
6 Mass of anhydrous ZnCl_{2} produced $=56.2 \mathrm{~g}-19.4 \mathrm{~g}=36.8 \mathrm{~g}$ (by the conservation of mass rule).

No. of moles in 36.8 g of $\mathrm{ZnCl}_{2}=\frac{36.8 \mathrm{~g}}{136.4 \mathrm{~g} \mathrm{~mol}^{-1}}=0.2697 \mathrm{~mol}$
No. of moles in 19.4 g of $\mathrm{H}_{2} \mathrm{O}=\frac{19.4 \mathrm{~g}}{18.0 \mathrm{~g} \mathrm{~mol}^{-1}}=1.077 \mathrm{~mol}$
If $1 \mathrm{ZnCl}_{2}: \mathrm{x} \mathrm{H}_{2} \mathrm{O}=0.2697 \mathrm{~mol} \mathrm{ZnCl}_{2}: 1.077 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}=1 \mathrm{ZnCl}_{2}: 3.99 \mathrm{H}_{2} \mathrm{O}$ then $\mathrm{x}=4$
The formula for hydrated zinc chloride is $\mathrm{ZnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$.

Shapes of molecules

Specification reference

- 3.1.3.5
- MS 4.1 Use angles and shapes in regular 2D and 3D structures
- MS 4.2 Visualise and represent 2D and 3D forms including 2D representations of 3D objects

Maths Skills for Chemistry references

- 2.1 Shape of simple molecules

Learning objectives

After completing the worksheet you should be able to:

- predict the shapes of, and bond angles in, simple molecules and ions
- visualise 3D shapes of simple molecules and ions and represent them in a 2D form.

I ntroduction

We can measure angles in degrees, ${ }^{\circ}$, where 360° is equal to one complete circle. We use degrees in chemistry when describing the shape of a molecule.
The shape of a molecule or molecular ion can be predicted if the connectivity of the atoms and the arrangement of electron pairs around the central atom is known. The electron pairs repel each other and as a result take up a geometry where they are as far apart as possible and therefore have the lowest energy. This is called electron pair repulsion theory. Note that atoms in Groups 5, 6, 7 and 0 and Period 3 onwards can hold more than 8 electrons in their outer shell. They can 'expand the octet'.
Table 1 shows the optimised geometries for arranging between 2 and 6 electron pairs around a central atom. A dashed bond represents a bond going into the page, a wedge bond represents a bond coming out of the page. The bond angle is the angle between any three atoms / any two bonds.
When a molecule contains lone pairs, lone pairs are more repulsive than bonding pairs as a result of being closer to the nucleus of the atom. This distorts the basic shape described in Table 1 and reduces the bond angle between bonding pairs by 2.5°.

Oxford A Level Sciences
Chemistry

Table 1 Optimised geometries of molecules containing two to six bonding pairs around a central atom

No. of electron pairs	2	3	4	5	6
Shape	$\mathrm{X}-\mathrm{A}$ - X				
Name	linear	trigonal planar	tetrahedral	triangular bipyramid	octahedral
Bond angle(s)	180°	120°	$\begin{gathered} 109.5^{\circ} \text { or } \\ 109^{\circ} \end{gathered}$	90° and 120°	90°

Worked example

Question

Draw a 'dot-and-cross' diagram for PCl_{3} and hence determine the molecule's overall shape and bond angle.

Answer

Step 1
Determine the number of outer shell (valence) electrons in each of the atoms in the molecule:

Phosphorus has 5 valence electrons; chlorine has 7 valence electrons.

Step 2

Draw a dot-and-cross diagram to show the bonding in the molecule.

Step 3

Oxford A Level Sciences
Chemistry

Count the number of electron pairs around the central atom. Use the table and this number of electron pairs to determine the basic geometry of the molecule.
In this case there are four pairs of electrons around the central phosphorus and so the electron pairs take up a tetrahedral structure;
 Therefore the shape of the molecule is either 'tetrahedral' or if we are looking only at the atoms, the shape is 'triangular pyramidal'.
Step 4
Calculate the bond angle.
The standard bond angle for a tetrahedral structure is 109.5°. However, lone pairs repel more than bonding pairs, and reduce the bond angle by 2.5°. Hence for PCl_{3}, the bond angle is $109.5^{\circ}-2.5^{\circ}=107^{\circ}$.

Questions

1 Draw 'dot-and-cross diagrams' for each of the molecules below.
Use the dot-and-cross diagrams to determine the overall shape (with respect to the number of pairs of electrons) and bond angle(s) for each of the molecules.
Show the bond angles on a 2D representation of the 3D structure.
(4 marks each)
a AlCl_{3}
b NH_{3}
c PF_{5}
d BeCl_{2}
e ClF_{3}
2 Draw 'dot-and-cross diagrams' for each of the molecular ions below.
Use these to determine the overall shape (with respect to the number of pairs of electrons) and bond angle(s) for each of the molecular ions.
Show the bond angles on a 2D representation of the 3D structure.
HINT For a negative molecular ion, add one extra electron for each negative charge. For a positive molecular ion, remove one electron for each positive charge.
a $\mathrm{PH}_{4}{ }^{+}$
b $\mathrm{H}_{3} \mathrm{O}^{+}$
c $\mathrm{IF}_{6}{ }^{+}$
d $\mathrm{AsF}_{6}{ }^{-}$
e $\mathrm{XeCl}_{3}{ }^{-}$
3 From AQA Chemistry Unit 1 Foundation Chemistry CHEM1 January 2013 (Question 6)

Oxford A Level Sciences

Chlorine can form molecules and ions that contain only chlorine, or that contain chlorine combined with another element.
Use your understanding of the electron pair repulsion theory to draw the shape of the AsCl_{3} molecule and the shape of the $\mathrm{Cl}_{3}{ }^{+}$ion.
Include any lone pairs of electrons that influence the shape.
Name the shape made by the atoms in the AsCl_{3} molecule and in the $\mathrm{Cl}_{3}{ }^{+}$ion.

Maths skills links to other areas

You will also be required to visualise and draw the shapes of molecules when studying isomers in the organic section of the course.

Oxford A Level Sciences
Chemistry
The shapes of molecules and ions Calculations

Answers

4 For each part of the question award a maximum of four marks from:

- correct dot-and-cross diagram
(1 mark)
- correct diagram of 3D structure
- correct shape of the molecule stated
- correct bond angle

	Dot-and-cross diagram	3D diagram	Shape of the molecule	Bond angle I°
a			trigonal planar	120
b			tetrahedral OR triangular pyramidal	107
c			triangular bipyramid	$\begin{gathered} 90 \text { and } \\ 120 \end{gathered}$
d		$\mathrm{Cl}-\mathrm{Be}-\mathrm{Cl}$	linear	180
e		$\begin{aligned} & \mathrm{F} / I / I_{1}, \frac{\mathrm{Cx}}{\mathrm{Cx}} \mathrm{x}-\mathrm{F} \end{aligned}$	triangular bipyramid	120

Oxford A Level Sciences

Chemistry

The shapes of molecules and ions
Calculations

5 For each part of the question award a maximum of three marks from:

- correct diagram of 3D structure
- correct shape of the molecule stated
- correct bond angle

	Dot and cross diagram	30 diagram	Shape of the molecule	Bond angle/ ${ }^{\circ}$
a			tetrahedral	109.5
b			tetrahedral	107
C			octahedral	90
d			octahedral	90
e			octahedral	90

Oxford A Level Sciences
Chemistry
The shapes of molecules and ions
Calculations

6 From AQA Chemistry Unit 1 Foundation Chemistry CHEM1 January 2013 (Question 6)

Answer	Marks	Guidance
 Triangular pyramid(al) Bent / V-shaped	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Mark is for $3 \mathrm{As}-\mathrm{Cl}$ bonds and 1 lone pair Mark is for $2 \mathrm{Cl}-\mathrm{Cl}$ bonds and 2 lone pairs Do not penalise if + not shown Not trigonal

The Maxwell- Boltzmann distribution

Specification references

- 3.1.5.3
- 3.1.5.5
- MS3.1

Maths Skills for Chemistry references

- 6.1 Boltzmann distributions

Learning objectives

After completing the worksheet you should be able to:

- interpret information provided in a graphical format
- explain, using Maxwell-Boltzmann distributions, the effect of temperature and a catalyst on the rate of a reaction.

I ntroduction

A distribution curve is a map of occurrences between two variables. It is similar to a frequency histogram.

From a distribution curve it is possible to determine the most probable value (the mode) for a set of data. The shape of the curve provides information about the distribution of the variables within the sample. The area under the curve is an indication of the size of sample.

Worked example: Distribution curves

Question

The graph below shows the distribution of particle sizes within a sample of powder.

particle size/nm
On the graph:
a label the most probable particle size
b sketch a curve to show how the distribution would change if there were more large particles in the sample, but the overall number of particles in the sample didn't change.

Answer

a The most probable particle size is the particle size with the highest frequency.

b If there were more large particles in the sample, the curve would be skewed towards the right (higher particle size). Note:

- The curve will still pass through $(0,0)$ as no particles have no size.
- The area under the curve would not change as the sample size is the same.
- The most probable particle size will be larger.
- The frequency of the most probable particle size will be lower. (This must be the case if the area remains constant.)

particle size/nm

Questions

1 The diagram below shows the Maxwell-Maxwell-Boltzmann distribution of molecular energies in a sample of gas.

a Indicate on the graph:
i the most probable energy of the particles
ii an approximate position for the average energy of the particles.
b E_{a} represents the activation energy that the particles need in order to react. Indicate on the graph, by shading, the number of particles with enough energy to react.
c A catalyst is added to the reaction. Indicate with $E_{\text {cat }}$ a possible energy for the new activation energy for the reaction with the catalyst, and explain the effect of the catalyst on the rate of reaction.

2 The curve below shows the distribution of molecular energies in a gas at temperature, T_{1}.

a Draw on the graph a second curve to represent the same sample of gas at a higher temperature. Label this curve T_{2}.
b Explain any changes to:
i the most probable energy of the particles
ii the total area under the curve
iii the number of particles with the activation energy, E_{a}
(2 marks)
iv the starting point of the curve
v the end point of the curve.

Maths skills links to other areas

You will also be required to interpret graphical data when interpreting spectra and when studying patterns in ionisation energies.

Answers

1

a i The most probable energy is the energy with the highest frequency.
ii The average energy will lie to the right of the most probable energy for this distribution because there are more particles (a bigger area under the curve) to the right of the most probable energy.
b The number of particles with the activation energy or above is indicated by shading under the curve to the right of the activation energy.
c A catalyst lowers the activation energy for a reaction. The number of particles with the activation energy is now vastly increased (the area to the right of the activation energy is now significantly larger) and hence there is a higher frequency of successful collisions.

2 a

b i The most probable energy of the particles will increase as the sample is at higher temperature.
ii The total area will not change as it is the same sample of gas and so the overall number of particles has not changed.
The number of particles with the activation energy will increase as the distribution is skewed to the right. The area under the curve to the right of the activation energy is bigger at T_{2} than at T_{1}.
iv Both curves start at $(0,0)$ as no particles have no energy.
v Both curves never touch the x-axis as a very few particles will have very high energies indeed (there is no upper limit).

Titration calculations

Specification reference

- 3.1.7
- MS 0.0 Recognise and make use of appropriate units in calculations
- MS 0.1 Recognise and use expressions in decimal and ordinary form
- MS 1.1 Use an appropriate number of significant figures
- MS 1.2 Find arithmetic means
- MS 2.2 Change the subject of an equation

Maths Skills for Chemistry references

- 1.9 Titrations

Learning objectives

After completing the calculation sheet you should be able to:

- select appropriate titration data and use this data to calculate a mean titre
- determine the concentration of an unknown solution of acid or alkali from titration data, reporting results to an appropriate number of significant figures.

This worksheet builds on your understanding of significant figures, balancing equations, units and concentration, and ratios and amount of substance.

I ntroduction

A titration is used to measure the volume of one solution that reacts with another solution. It allows you to determine the precise endpoint of a reaction and hence is a useful analytical tool.
When analysing a substance by titration, the titration is repeated until two concordant titres are achieved. These must be within $0.10 \mathrm{~cm}^{3}$ of each other. The mean of the concordant titres is then used in any calculations. The mean titre is calculated by finding the sum of all concordant titres and dividing by the number of concordant titres in the sum:

$$
\text { Mean titre }=\frac{\text { Sum of all concordant titres }}{\text { Number of concordant titres }}
$$

Worked example

Question

A solution of sulfuric acid of unknown concentration was titrated against $25.0 \mathrm{~cm}^{3}$ of a $0.105 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of sodium hydroxide. The results of the analysis are shown in the table.

	Trial	1	$\mathbf{2}$	$\mathbf{3}$
Final burette reading $/ \mathrm{cm}^{3}$	22.55	41.60	20.30	39.40
Initial burette reading $/ \mathrm{cm}^{3}$	2.05	22.55	1.40	20.30
Titre $/ \mathrm{cm}^{3}$	20.50	19.05	18.90	19.10

Calculate the concentration of the sulfuric acid solution.

Answer

Step 1
Identify the concordant titres. These are the titres within $0.1 \mathrm{~cm}^{3}$ of each other.
In this case these are $19.05 \mathrm{~cm}^{3}$ and $19.10 \mathrm{~cm}^{3}$.
Step 2
Calculate the mean titre from the two or more concordant titres:

$$
\left(19.05 \mathrm{~cm}^{3}+19.10 \mathrm{~cm}^{3}\right) \div 2=19.075 \mathrm{~cm}^{3}
$$

HINT: This value should lie between your concordant titres.

Step 3

Write a balanced symbol equation for the reaction occurring.

$$
2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

Step 4
Calculate the no. of moles in the solution with a known concentration.
In this case, the no. of moles in $25.0 \mathrm{~cm}^{3}$ of $0.105 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$:

$$
\text { moles }=\text { concentration }\left(\mathrm{mol} \mathrm{dm}^{-3}\right) \times \text { volume }\left(\mathrm{dm}^{3}\right)
$$

NOTE: The volume must be expressed in dm^{3}, where $1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}$.
Therefore $25.0 \mathrm{~cm}^{3}=0.025 \mathrm{dm}^{3}$.

$$
\text { moles of } \mathrm{NaOH}=0.105 \mathrm{~mol} \mathrm{dm}^{-3} \times 0.025 \mathrm{dm}^{3}=2.625 \times 10^{-3} \mathrm{~mol}
$$

Step 5

Use the stoichiometry of the reaction to determine the number of moles of sulfuric acid which reacts with $2.625 \times 10^{-3} \mathrm{~mol}$ of NaOH exactly.

$$
2 \mathrm{NaOH}: 1 \mathrm{H}_{2} \mathrm{SO}_{4}
$$

Therefore, the no. of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ required to exactly neutralise $2.625 \times 10^{-3} \mathrm{~mol}$ of $\mathrm{NaOH}=\frac{2.625 \times 10^{-3} \mathrm{~mol}}{2}$

$$
=1.3125 \times 10^{-3} \mathrm{~mol} .
$$

Step 6
Calculate the concentration of the sulfuric acid.
The mean titre of sulfuric acid contains $1.3125 \times 10^{-3} \mathrm{~mol}$.
Therefore $19.075 \mathrm{~cm}^{3}=0.019075 \mathrm{dm}^{3}$ of the sulfuric acid contains $1.3125 \times 10^{-3} \mathrm{~mol}$ of acid.
Substitute these values into the equation for concentration:
Concentration $\left(\right.$ moldm $\left.^{-3}\right)=\frac{\text { number of moles }(\mathrm{mol})}{\text { volume }\left(\mathrm{dm}^{3}\right)}$
Concentration $\left(\right.$ moldm $\left.^{-3}\right)=\frac{1.3125 \times 10^{-3} \mathrm{~mol}}{0.019075 \mathrm{dm}^{3}}$

$$
=0.06881 \mathrm{~mol} \mathrm{dm}^{-3}
$$

Step 7
Give your final answer to the same degree of accuracy (significant figures) as the information given in the question, in this case three significant figures.
The concentration of the sulfuric acid is $0.0688 \mathrm{~mol} \mathrm{dm}^{-3}$.

Questions

1 A solution of hydrochloric acid of unknown concentration was titrated against $25.0 \mathrm{~cm}^{3}$ of a $0.210 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of sodium hydroxide. The results of the analysis are shown in the table.

	Trial	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Final burette reading $/ \mathrm{cm}^{3}$	17.45	28.65	15.70	30.90
Initial burette reading $/ \mathrm{cm}^{3}$	1.00	32.90	0.40	15.70
Titre $/ \mathrm{cm}^{3}$	16.45	15.45	15.30	15.20

a Write a balanced symbol equation for the neutralisation reaction.
b Calculate the mean titre of hydrochloric acid.
c Calculate the number of moles in $25.0 \mathrm{~cm}^{3}$ of a $0.210 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of NaOH .
d Use your answer to parts \mathbf{a} and \mathbf{c} to determine the no. of moles of hydrochloric acid in the average titre.
e Use your answers to parts \mathbf{b} and \mathbf{d} to calculate the concentration of the hydrochloric acid.

2 A solution of sulfuric acid of unknown concentration was titrated against $25.0 \mathrm{~cm}^{3}$ of a $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of calcium hydroxide. The equation for the neutralisation is:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

The results of the analysis are shown in the table.

	Trial	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Final burette reading $/ \mathrm{cm}^{3}$	32.05	17.45	28.45	28.30
Initial burette reading $/ \mathrm{cm}^{3}$	0.05	0.10	0.10	0.00
Titre $/ \mathrm{cm}^{3}$	32.00	28.55	28.35	28.30

Calculate the concentration of the sulfuric acid solution.
$32 \mathrm{NaHCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2}$
$25.0 \mathrm{~cm}^{3}$ of a $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of sodium hydrogen carbonate was titrated against a solution of sulfuric acid of unknown concentration. The results of the titration are shown in the table below.

	Trial	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Final burette reading $/ \mathrm{cm}^{3}$	17.20	32.25	15.25	31.40
Initial burette reading $/ \mathrm{cm}^{3}$	0.10	17.20	0.10	16.30
Titre $/ \mathrm{cm}^{3}$	17.10	15.05	15.15	15.10

Calculate the concentration of the sulfuric acid.
$420.0 \mathrm{~cm}^{3}$ of ammonia solution $\mathrm{NH}_{4} \mathrm{OH}$, was placed in a conical flask and titrated against a $0.250 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of hydrochloric acid. The results are shown below.

	Trial	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4
Final burette reading $/ \mathrm{cm}^{3}$	35.10	32.25	32.35	32.15	32.05
Initial burette reading $/ \mathrm{cm}^{3}$	0.10	0.20	0.10	0.25	0.00
Titre $/ \mathrm{cm}^{3}$	35.00	32.05	32.25	31.90	32.05

a Construct an equation for the neutralisation reaction
b Calculate the concentration of the ammonia solution.

Maths skills links to other areas

These calculations use many of the mathematical skills you have encountered so far including using numbers in standard form, giving answers to an appropriate degree of accuracy and using ratios to determine numbers of moles reacting. These skills will be required throughout your A Level Chemistry studies.
You will be required to use weighted means when calculating atomic mass from isotopic abundances.

Answers

1 a $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
(1 mark)
b Concordant titres are $15.30 \mathrm{~cm}^{3}$ and $15.20 \mathrm{~cm}^{3}$

$$
\begin{align*}
\text { Mean titre } & =\frac{15.30 \mathrm{~cm}^{3} \times 15.20 \mathrm{~cm}^{3}}{2} \\
& =15.25 \mathrm{~cm}^{3} \tag{1mark}
\end{align*}
$$

c moles of $\mathrm{NaOH}=0.025 \mathrm{dm}^{3} \times 0.210 \mathrm{~mol} \mathrm{dm}^{-3}$

$$
=5.25 \times 10^{-3} \mathrm{~mol}
$$

d $1 \mathrm{~mol} \mathrm{HCl}: 1 \mathrm{~mol} \mathrm{NaOH}$ therefore moles of $\mathrm{HCl}=5.25 \times 10^{-3} \mathrm{~mol}$
e Concentration $=\frac{5.25 \times 10^{-3} \mathrm{~mol}}{0.01525 \mathrm{dm}^{3}}$

$$
\begin{aligned}
& =0.3442 \mathrm{~mol} \mathrm{dm}^{-3} \\
& =0.344 \mathrm{~mol} \mathrm{dm}^{-3} \text { (to } 3 \text { significant figures) } .
\end{aligned}
$$

2 Concordant titres are $28.35 \mathrm{~cm}^{3}$ and $28.30 \mathrm{~cm}^{3}$
Mean titre of sulfuric acid $=28.325 \mathrm{~cm}^{3}$
Moles of $\mathrm{Ca}(\mathrm{OH})_{2}=0.025 \mathrm{dm}^{3} \times 0.100 \mathrm{~mol} \mathrm{dm}^{-3}$

$$
\begin{equation*}
=2.5 \times 10^{-3} \mathrm{~mol} \tag{1mark}
\end{equation*}
$$

$1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}: 1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$ therefore moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=2.5 \times 10^{-3} \mathrm{~mol}$
Concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{2.5 \times 10^{-3} \mathrm{~mol}}{0.028325 \mathrm{dm}^{3}}$

$$
\begin{aligned}
& =0.08826 \mathrm{~mol} \mathrm{dm}^{-3} \\
& =0.0882 \mathrm{~mol} \mathrm{dm}^{-3} \text { (to } 3 \text { significant figures). }
\end{aligned}
$$

3 Concordant titres are $15.05 \mathrm{~cm}^{3}, 15.15 \mathrm{~cm}^{3}$ and $15.10 \mathrm{~cm}^{3}$
Mean titre of sulfuric acid $=15.10 \mathrm{~cm}^{3}$
Moles of $\mathrm{NaHCO}_{3}=0.025 \mathrm{dm}^{3} \times 0.200 \mathrm{~mol} \mathrm{dm}^{-3}$

$$
=5.00 \times 10^{-3} \mathrm{~mol}
$$

$2 \mathrm{~mol} \mathrm{NaHCO}_{3}: 1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$ therefore moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=2.5 \times 10^{-3} \mathrm{~mol}$

$$
\text { Concentration of } \begin{aligned}
\mathrm{H}_{2} \mathrm{SO}_{4} & =\frac{2.5 \times 10^{-3} \mathrm{~mol}}{0.0151 \mathrm{dm}^{3}} \\
& =0.1655 \mathrm{~mol} \mathrm{dm}^{-3} \\
& =0.166 \mathrm{~mol} \mathrm{dm}^{-3} \text { (to } 3 \text { significant figures). }
\end{aligned}
$$

4 a $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$
b Concordant titres are $32.05 \mathrm{~cm}^{3}$ and $32.05 \mathrm{~cm}^{3}$
Mean titre of $\mathrm{HCl}=32.05 \mathrm{~cm}^{3}$
Moles of $\mathrm{HCl}=0.03205 \mathrm{dm}^{3} \times 0.250 \mathrm{~mol} \mathrm{dm}^{-3}$

$$
=8.0125 \times 10^{-3} \mathrm{~mol}
$$

$1 \mathrm{~mol} \mathrm{NH} 44 \mathrm{OH}: 1 \mathrm{~mol} \mathrm{HCl}$ therefore moles of $\mathrm{HCl}=8.0125 \times 10^{-3} \mathrm{~mol}$

$$
\begin{aligned}
& \text { Concentration of ammonia solution } \begin{aligned}
& =\frac{8.0125 \times 10^{-3} \mathrm{~mol}}{0.0200 \mathrm{dm}^{3}} \\
& =0.04006 \mathrm{~mol} \mathrm{dm}^{-3} \\
& =0.0400 \mathrm{~mol} \mathrm{dm}^{-3} \text { (to } 3 \text { significant figures). }
\end{aligned} . \begin{aligned}
\\
\end{aligned} \\
&
\end{aligned}
$$

Calculations involving buffer solutions

Specification references

- 3.1.12
- MS0.1, 0.4
- MS2.4, 2.5

Maths Skills for Chemistry references

- 7.9 pH of buffers

Learning outcomes

After completing this worksheet, you should be able to:

- adapt the equation for the acid dissociation constant in order to find the pH of a buffer solution
- calculate the pH of a buffer solution from the concentrations of the weak acid and its conjugate base
- calculate the concentrations of either the acid or salt contained in a buffer solution given all the other variables.

I ntroduction

Buffer solutions are studied after pH and weak acids and acid dissociation constants. Therefore, you should be familiar with the expressions for $\mathrm{pH},\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ (in terms of pH$), K_{\mathrm{a}}$, and $\mathrm{p} K_{\mathrm{a}}$.
A buffer solution is a mixture of a weak acid and its conjugate base. The conjugate base is in the form of a salt of the acid. An example of a buffer solution is a solution of ethanoic acid and sodium ethanoate. The ethanoate ion is the conjugate base.
The equation for the acid dissociation constant of a weak acid, HA, is as follows:

$$
K_{\mathrm{a}}=\left[\mathrm{H}^{+}(\mathrm{aq})\right] \frac{\left[\mathrm{A}^{-}(\mathrm{aq})\right]}{[\mathrm{HA}(\mathrm{aq})]}
$$

Because we are usually interested in the pH of the solution, we need to know [$\left.\mathrm{H}^{+}(\mathrm{aq})\right]$.
Rearranging this equation so that the $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ is the subject of the equation we multiply both sides by $[\mathrm{HA}]$ and divide both sides by $\left[\mathrm{A}^{-}\right]$.
The rearranged equation is: $\left[\mathrm{H}^{+}(\mathrm{aq})\right]=K_{\mathrm{a}} \times \frac{[\mathrm{HA}(\mathrm{aq})]}{\left[\mathrm{A}^{-}(\mathrm{aq})\right]}$
And since $[\mathrm{HA}(\mathrm{aq})]=$ concentration of the acid and $\left[\mathrm{A}^{-}(\mathrm{aq})\right]=$ concentration of the salt we have:

$$
\left[\mathbf{H}^{+}(\mathbf{a q})\right]=K_{\mathbf{a}} \times \frac{[\mathbf{a c i d}]}{[\mathbf{s a l t}]}
$$

And this equation can be used to find the pH of a buffer from the $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$.
An interesting development of this equation is that when $[\mathrm{HA}(\mathrm{aq})]=\left[\mathrm{A}^{-}(\mathrm{aq})\right]$. In this case $\left[\mathrm{H}^{+}(\mathrm{aq})\right]=K_{\mathrm{a}}$, and when taking minus logs on both sides:

$$
\mathrm{pH}=-\log _{10} K_{\mathrm{a}}=\mathrm{p} K_{\mathrm{a}}
$$

This means that if we add together equal volumes of equimolar solution of a weak acid and its salt, and measure the pH of the resulting solution, that will give us the $\mathrm{p} K_{\mathrm{a}}$ of the acid.

Worked example

Question

1 A weak acid has a K_{a} equal to 6.2×10^{-6}. What is the pH of a buffer solution where the concentration of the acid is $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ and the salt has a concentration of $0.0660 \mathrm{~mol} \mathrm{dm}^{-3}$?

Answer

Use the equation above in bold.

$$
\begin{array}{r}
{\left[\mathrm{H}^{+}(\mathrm{aq})\right]=K_{\mathrm{a}} \times \frac{[\mathrm{acid}]}{[\mathrm{salt}]}=6.2 \times 10^{-6} \times \frac{0.1}{0.0660}=9.40 \times 10^{-6}} \\
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}(\mathrm{aq})\right]=-\log _{10} 9.40 \times 10^{-6}=5.03
\end{array}
$$

Question

2 A buffer solution has a pH of 7.9. The concentration of the acid is $0.0500 \mathrm{~mol} \mathrm{dm}^{-3}$ and its $\mathrm{p} K_{\mathrm{a}}$ is equal to 8.3. What is the concentration of the salt solution in this buffer mixture?

Answer

Step 1 Use the equation above in bold.

$$
\left[\mathrm{H}^{+}(\mathrm{aq})\right]=K_{\mathrm{a}} \times \frac{[\mathrm{acid}]}{[\mathrm{salt}]}
$$

Step 2 Rearrange the equation to make [salt] the subject of the equation.

$$
[\mathrm{salt}]=K_{\mathrm{a}} \times \frac{[\mathrm{acid}]}{\left[\mathrm{H}^{+}(\mathrm{aq})\right]}
$$

Step 3 Calculate the values of K_{a} and $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ and then substitute them into the equation.
$K_{\mathrm{a}}=10^{-\mathrm{p} K_{\mathrm{a}}}=10^{-8.3}=5.01 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}$
and $\left[\mathrm{H}^{+}(\mathrm{aq})\right]=10^{-\mathrm{pH}}=10^{-7.9}=1.26 \times 10^{-8} \mathrm{~mol} \mathrm{dm}^{-3}$
Step 3 Substitute them into the equation.

$$
\begin{aligned}
{[\text { salt }] } & =K_{\mathrm{a}} \times \frac{[\mathrm{acid}]}{\left[\mathrm{H}^{+}(\mathrm{aq})\right]}=5.01 \times 10^{-9} \times \frac{0.100}{1.26} \times 10^{-8} \\
& =0.0398 \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

Step 4 Ask yourself, does this make sense? The pH is lower than the $\mathrm{p} K_{\mathrm{a}}$ which means that the concentration of the acid must be greater than that of the conjugate base. Yes, this looks OK!

Question

3 A buffer solution consists of $100 \mathrm{~cm}^{3}$ of a $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ acid and $50 \mathrm{~cm}^{3}$ of a solution of its $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ conjugate base (salt). The $\mathrm{p} K_{\mathrm{a}}$ of the acid is 4.7. What is the pH of the buffer solution?

Answer

The $K_{a}=10^{-\rho K_{a}}=10^{4.7}=2 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
The total volume of the solution $=100+50=150 \mathrm{~cm}^{3}$
The concentrations of the acid and the salt or conjugate base have changed when they mix.

The $[$ acid $]=\frac{100}{150} \times 0.100=0.0667 \mathrm{~mol} \mathrm{dm}^{-3}$
The [salt] $=\frac{50}{150} \times 0.100=0.0333 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{H}^{+}\right]=\frac{[\text { acid }]}{[\text { salt }]} \times K_{\mathrm{a}}=\frac{0.0667}{0.0333} \times 2 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
$=4 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathrm{pH}=4.40$. This makes sense because the [acid] is greater than the [salt], so pH should be lower than $\mathrm{p} K_{\mathrm{a}}$ value.

Questions

1 Calculate the pH of the following buffer solutions. For each acid you are given the $\mathrm{p} K_{\mathrm{a}}$ value and the concentrations of the acid and the salt.

Acid	pK_{a}	[Acid] / $\mathbf{m o l ~ d m}^{\mathbf{3}}$	[Salt] / $\mathrm{mol} \mathrm{dm}^{\mathbf{3}}$
\mathbf{a}	5.7	0.100	0.075
\mathbf{b}	4.1	0.05	0.075
\mathbf{c}	8.2	0.105	0.210
\mathbf{d}	3.5	0.033	0.050

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2 In the following buffer solutions, calculate the pH , the $\mathrm{p} K_{\mathrm{a}}$, the concentration of the acid, or the concentration of the salt as indicated in the table.

Buffer solution	pH of buffer	$\mathrm{p} K_{\mathrm{a}}$ of acid	$\begin{gathered} {[\text { Acid] } / \mathrm{mol}} \\ \mathrm{dm}^{-3} \end{gathered}$	[Salt] / mol dm^{-3}
a	7.20	7.20	0.100	Calculate
b	4.70	5.10	Calculate	0.05
c	Calculate	6.35	0.100	0.200
d	5.65	Calculate	0.100	0.066

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3 Each of these buffer solutions is made by mixing the given volumes and concentration or weak acid and salt. Calculate the pH of the buffer solution formed.

Buffer solution	$\mathrm{p} K_{\mathrm{a}}$ of acid	Volume of acid solution / cm $^{\mathbf{3}}$	[Acid] I $\mathbf{m o l ~ d m}^{\mathbf{- 3}}$	Volume of salt solution $/$ $\mathbf{c m}^{\mathbf{3}}$	[Salt] / $\mathbf{m o l ~ d m}^{\mathbf{3}}$
a	5.00	100	0.100	100	0.150
\mathbf{b}	4.2	25	0.200	50	0.150
\mathbf{c}	3.5	80	0.050	40	0.075
\mathbf{d}	7.2	100	0.066	50	0.050

\qquad

Maths skills links to other areas

The use of logarithms is linked to calculations of the activation energy of a reaction using the Arrhenius equation. Rearranging equations comes into many topics including calculation of the rate constant from rate equations.

Answers

1 a $K_{\mathrm{a}}=2.00 \times 10^{-6}(1$ mark $) ;\left[\mathrm{H}^{+}\right]=2.66 \times 10^{-6}(1$ mark $) ; \mathrm{pH}=5.58$
b $K_{\mathrm{a}}=7.94 \times 10^{-5}(1$ mark $) ;\left[\mathrm{H}^{+}\right]=5.30 \times 10^{-5}(1$ mark $) ; \mathrm{pH}=4.28$
c $K_{\mathrm{a}}=6.31 \times 10^{-9}(1$ mark $) ;\left[\mathrm{H}^{+}\right]=3.15 \times 10^{-9}(1$ mark $) ; \mathrm{pH}=8.50$
d $K_{\mathrm{a}}=3.16 \times 10^{-4}(1$ mark $) ;\left[\mathrm{H}^{+}\right]=2.09 \times 10^{-9}(1$ mark); $\mathrm{pH}=3.70$ (1 decimal place)

2 a $\left[\mathrm{H}^{+}\right]=10^{-7.2}=6.31 \times 10^{-8}(1$ mark $) ; K_{\mathrm{a}}=6.31 \times 10^{-8} ;(1$ mark $)[$ salt $]=0.100$ $\mathrm{mol} \mathrm{dm}^{-3}$
b $\quad[$ acid $]=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{\left[K_{a}\right]} ;(1$ mark $)\left[\mathrm{H}^{+}\right]=2 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3} ; K_{\mathrm{a}}=7.94 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$; (1 mark)
[acid] $=0.126 \mathrm{~mol} \mathrm{dm}^{-3} ;(1$ mark $)$
c $K_{\mathrm{a}}=4.47 \times 10^{-7} \mathrm{~mol} \mathrm{dm}{ }^{-3}$; (1 mark) $\left[\mathrm{H}^{+}\right]=2.24 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$; (1 mark) pH $=6.70$ (1 mark)
d $\left[\mathrm{H}^{+}\right]=2.24 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3} ;(1$ mark $) K_{\mathrm{a}}=1.48 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3} ; \mathrm{p} K_{\mathrm{a}}=5.83$
3 a $K_{\mathrm{a}}=1 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}(1$ mark $)$; [acid $]=0.05 \mathrm{~mol} \mathrm{dm}^{-3}(1$ mark $)$; [salt] $=$ $0.075 \mathrm{~mol} \mathrm{dm}^{-3}$ (1 mark); $\left[\mathrm{H}^{+}\right]=6.67 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$ (1 mark); $\mathrm{pH}=5.17(1$ mark)
b $K_{\mathrm{a}}=6.31 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\left(1\right.$ mark); [acid] $=0.0667 \mathrm{~mol} \mathrm{dm}^{-3}$ (1 mark); [salt] $=0.100 \mathrm{~mol} \mathrm{dm}^{-3}(1 \mathrm{mark}) ;\left[\mathrm{H}^{+}\right]=4.21 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}(1 \mathrm{mark}) ; \mathrm{pH}=4.38(1$ mark)
c $K_{\mathrm{a}}=3.16 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ (1 mark); [acid] $=0.0333 \mathrm{~mol} \mathrm{dm}^{-3}$ (1 mark); [salt] $=0.025 \mathrm{~mol} \mathrm{dm}^{-3}(1$ mark $) ;\left[\mathrm{H}^{+}\right]=4.21 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}(1$ mark $) ; \mathrm{pH}=3.38(1$ mark)
d $K_{\mathrm{a}}=6.31 \times 10^{-8} \mathrm{~mol} \mathrm{dm}^{-3}(1 \mathrm{mark})$; [acid] $=0.0444 \mathrm{~mol} \mathrm{dm}^{-3}(1$ mark); [salt] $=0.0167 \mathrm{~mol} \mathrm{dm}^{-3}(1$ mark $) ;\left[\mathrm{H}^{+}\right]=1.67 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$ (1 mark); $\mathrm{pH}=6.78$ (1 mark)

Transition from GCSE to A Level

Moving from GCSE Science to A Level can be a daunting leap. You'll be expected to remember a lot more facts, equations, and definitions, and you will need to learn new maths skills and develop confidence in applying what you already know to unfamiliar situations.
This worksheet aims to give you a head start by helping you:

- to pre-learn some useful knowledge from the first chapters of your A Level course
- understand and practise of some of the maths skills you'll need.

Learning objectives

After completing the worksheet you should be able to:

- define practical science key terms
- recall the answers to the retrieval questions
- perform maths skills including:
- converting between units and standard form and decimals
- balancing chemical equations
- rearranging equations
- calculating moles and masses
- calculating percentage yield and percentage error
- interpreting graphs of reactions.

Chemistry

Retrieval questions

You need to be confident about the definitions of terms that describe measurements and results in A Level Chemistry.

Learn the answers to the questions below then cover the answers column with a piece of paper and write as many answers as you can. Check and repeat.

Practical science key terms

When is a measurement valid?	when it measures what it is supposed to be measuring		
When is a result accurate?	when it is close to the true value		
What are precise results?	when repeat measurements are consistent/agree closely with each other		
What is repeatability?	how precise repeated measurements are when they are taken by the same person, using the same equipment, under the same conditions		
What is reproducibility?	how precise repeated measurements are when they are taken by different people, using different equipment		
What is the uncertainty of a measurement?	the interval within which the true value is expected to lie		
Define measurement error	the difference between a measured value and the true value		
What type of error is caused by results varying	random error		
What is a systematic error?	a consistent difference between the measured values and true values		
What does zero error mean?	a measuring instrument gives a false reading when the true value should be zero		
Which variable is changed or selected by the	independent variable		
investigator?		\quad	What is a dependent variable?
:---		a variable that is measured every time the independent	
:---			
variable is changed			

Atomic structure

Learn the answers to the questions below then cover the answers column with a piece of paper and write as many answers as you can. Check and repeat.

What does an atom consist of?	a nucleus containing protons and neutrons, surrounded by electrons
What are the relative masses of a proton, neutron, and electron?	1,1 , and $\frac{1}{1840}$ respectively
What are the relative charges of a proton, neutron, and electron?	+1, 0, and -1 respectively
How do the number of protons and electrons differ in an atom?	they are the same because atoms have neutral charge
What force holds an atomic nucleus together?	strong nuclear force
What is the atomic number of an element?	the number of protons in the nucleus of a single atom of an element
What is the mass number of an element?	number of protons + number of neutrons
What is an isotope?	an atom with the same number of protons but different number of neutrons
What is an ion?	an atom, or group of atoms, with a charge
What is the function of a mass spectrometer?	it accurately determines the mass and abundance of separate atoms or molecules, to help us identify them
What is a mass spectrum?	the output from a mass spectrometer that shows the different isotopes that make up an element
What is the total number of electrons that each electron shell (main energy level) can contain?	$2 n^{2}$ electrons, where n is the number of the shell
How many electrons can the first three electron shells hold each?	2 electrons (first shell), 8 electrons (second shell), 18 electrons (third shell)
What are the first four electron sub-shells (orbitals) called?	s, p, d, and f (in order)
How many electrons can each orbital hold?	a maximum of 2 electrons
Define the term ionisation energy, and give its unit	the energy it takes to remove a mole of electrons from a mole of atoms in the gaseous state, unit $=\mathrm{kJ} \mathrm{mol}^{-1}$
What is the equation for relative atomic mass $\left(A_{r}\right) ?$	$\text { relative atomic mass }=\frac{\text { average mass of } 1 \text { atom }}{\frac{1}{12}^{\text {th }} \text { mass of } 1 \text { atom of }{ }^{12} \mathrm{C}}$
What is the equation for relative molecular mass $\left(M_{r}\right) ?$	$\text { relative molecular mass }=\frac{\text { average mass of } 1 \text { molecule }}{\frac{1}{12}^{\text {th }} \text { mass of } 1 \text { atom of }{ }^{12} \mathrm{C}}$

Maths skills

1 Core mathematical skills

A practical chemist must be proficient in standard form, significant figures, decimal places, SI units, and unit conversion.

1.1 Standard form

In science, very large and very small numbers are usually written in standard form. Standard form is writing a number in the format $A \times 10^{\times}$where A is a number from 1 to 10 and x is the number of places you move the decimal place.
For example, to express a large number such as $50000 \mathrm{~mol} \mathrm{dm}^{-3}$ in standard form, $\mathrm{A}=5$ and $\mathrm{x}=$ 4 as there are four numbers after the initial 5.

Therefore, it would be written as $5 \times 10^{4} \mathrm{~mol} \mathrm{dm}^{-3}$.
To give a small number such as $0.00002 \mathrm{Nm}^{2}$ in standard form, $\mathrm{A}=2$ and there are five numbers before it so $x=-5$.

So it is written as $2 \times 10^{-5} \mathrm{Nm}^{2}$.

Practice questions

1 Change the following values to standard form.
a boiling point of sodium chloride: $1413{ }^{\circ} \mathrm{C}$
b largest nanoparticles: $0.0001 \times 10^{-3} \mathrm{~m}$
c number of atoms in 1 mol of water: 1806×10^{21}
2 Change the following values to ordinary numbers.
a 5.5×10^{-6}
b 2.9×10^{2}
c 1.115×10^{4}
d 1.412×10^{-3}
e 7.2×10^{1}

1.2 Significant figures and decimal places

In chemistry, you are often asked to express numbers to either three or four significant figures. The word significant means to 'have meaning'. A number that is expressed in significant figures will only have digits that are important to the number's precision.

It is important to record your data and your answers to calculations to a reasonable number of significant figures. Too many and your answer is claiming an accuracy that it does not have, too few and you are not showing the precision and care required in scientific analysis.
For example, 6.9301 becomes 6.93 if written to three significant figures.
Likewise, 0.00043456 is 0.000435 to three significant figures.
Notice that the zeros before the figure are not significant - they just show you how large the number is by the position of the decimal point. Here, a 5 follows the last significant digit, so just as with decimals, it must be rounded up.

Any zeros between the other significant figures are significant. For example, 0.003018 is 0.00302 to three significant figures.

Sometimes numbers are expressed to a number of decimal places. The decimal point is a place holder and the number of digits afterwards is the number of decimal places.

For example, the mathematical number pi is 3 to zero decimal places, 3.1 to one decimal place, 3.14 to two decimal places, and 3.142 to three decimal places.

Practice questions

3 Give the following values in the stated number of significant figures (s.f.).
a 36.937 (3 s.f.)
b 258 (2 s.f.)
c 0.04319 (2 s.f.)
d 7999032 (1 s.f.)

4 Use the equation:
number of molecules $=$ number of moles $\times 6.02 \times 10^{23}$ molecules per mole
to calculate the number of molecules in 0.5 moles of oxygen. Write your answer in standard form to 3 s.f.
5 Give the following values in the stated number of decimal places (d.p.).
a 4.763 (1 d.p.)
b 0.543 (2 d.p.)
c 1.005 (2 d.p.)
d 1.9996 (3 d.p.)

1.3 Converting units

Units are defined so that, for example, every scientist who measures a mass in kilograms uses the same size for the kilogram and gets the same value for the mass. Scientific measurement depends on standard units - most are Système International (SI) units.
If you convert between units and round numbers properly it allows quoted measurements to be understood within the scale of the observations.

Multiplication factor	Prefix	Symbol
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n

Unit conversions are common. For instance, you could be converting an enthalpy change of $488889 \mathrm{~J} \mathrm{~mol}^{-1}$ into $\mathrm{kJ} \mathrm{mol}^{-1}$. A kilo is 10^{3} so you need to divide by this number or move the decimal point three places to the left.
$488889 \div 10^{3} \mathrm{~kJ} \mathrm{~mol}^{-1}=488.889 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Converting from $\mathrm{mJ} \mathrm{mol}^{-1}$ to $\mathrm{kJ} \mathrm{mol}^{-1}$, you need to go from 10^{3} to 10^{-3}, or move the decimal point six places to the left.
$333 \mathrm{~mJ} \mathrm{~mol}^{-1}$ is $0.000333 \mathrm{~kJ} \mathrm{~mol}^{-1}$
If you want to convert from $333 \mathrm{~mJ} \mathrm{~mol}^{-1}$ to $\mathrm{nJ} \mathrm{mol}^{-1}$, you would have to go from 10^{-9} to 10^{-3}, or move the decimal point six places to the right.
$333 \mathrm{~mJ} \mathrm{~mol}^{-1}$ is $333000000 \mathrm{~nJ} \mathrm{~mol}^{-1}$

Practice questions

6 Calculate the following unit conversions.
a $300 \mu \mathrm{~m}$ to m
b 5 MJ to mJ
c 10 GW to kW

2 Balancing chemical equations

2.1 Conservation of mass

When new substances are made during chemical reactions, atoms are not created or destroyed - they just become rearranged in new ways. So, there is always the same number of each type of atom before and after the reaction, and the total mass before the reaction is the same as the total mass after the reaction. This is known as the conservation of mass.

You need to be able to use the principle of conservation of mass to write formulae, and balanced chemical equations and half equations.

2.2 Balancing an equation

The equation below shows the correct formulae but it is not balanced.
$\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
While there are two hydrogen atoms on both sides of the equation, there is only one oxygen atom on the right-hand side of the equation against two oxygen atoms on the left-hand side. Therefore, a two must be placed before the $\mathrm{H}_{2} \mathrm{O}$.
$\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
Now the oxygen atoms are balanced but the hydrogen atoms are no longer balanced. A two must be placed in front of the H_{2}.
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
The number of hydrogen and oxygen atoms is the same on both sides, so the equation is balanced.

Practice questions

1 Balance the following equations.
a $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}$
b $\mathrm{N}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$
c $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

2.3 Balancing an equation with fractions

To balance the equation below:
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

- Place a two before the CO_{2} to balance the carbon atoms.
- Place a three in front of the $\mathrm{H}_{2} \mathrm{O}$ to balance the hydrogen atoms.
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
There are now four oxygen atoms in the carbon dioxide molecules plus three oxygen atoms in the water molecules, giving a total of seven oxygen atoms on the product side.
- To balance the equation, place three and a half in front of the O_{2}.
$\mathrm{C}_{2} \mathrm{H}_{6}+31 / 2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
- Finally, multiply the equation by 2 to get whole numbers.

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

Practice questions

2 Balance the equations below.
a $\mathrm{C}_{6} \mathrm{H}_{14}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
b $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$

2.4 Balancing an equation with brackets

$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
Here the brackets around the hydroxide $\left(\mathrm{OH}^{-}\right)$group show that the $\mathrm{Ca}(\mathrm{OH})_{2}$ unit contains one calcium atom, two oxygen atoms, and two hydrogen atoms.
To balance the equation, place a two before the HCl and another before the $\mathrm{H}_{2} \mathrm{O}$.
$\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Practice questions

3 Balance the equations below.

$$
\begin{aligned}
& \text { a } \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \text { b } \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{NaNO}_{3}
\end{aligned}
$$

3 Rearranging equations and calculating concentrations

3.1 Rearranging equations

In chemistry, you sometimes need to rearrange an equation to find the desired values.
For example, you may know the amount of a substance (n) and the mass of it you have (m), and need to find its molar mass (M).
The amount of substance (n) is equal to the mass you have (m) divided by the molar mass (M):

$$
n=\frac{m}{M}
$$

You need to rearrange the equation to make the molar mass (M) the subject.
Multiply both sides by the molar mass (M):

$$
M \times n=m
$$

Then divide both sides by the amount of substance (n):

$$
m=\frac{m}{N}
$$

Practice questions

1 Rearrange the equation $c=\frac{n}{V}$ to make:
a n the subject of the equation
b V the subject of the equation.
2 Rearrange the equation $P V=n R T$ to make:
a n the subject of the equation
b T the subject of the equation.

3.2 Calculating concentration

The concentration of a solution (a solute dissolved in a solvent) is a way of saying how much solute, in moles, is dissolved in $1 \mathrm{dm}^{3}$ or 1 litre of solution.
Concentration is usually measured using units of $\mathrm{mol} \mathrm{dm}^{-3}$. (It can also be measured in $\mathrm{g} \mathrm{dm}^{3}$.)
The concentration of the amount of substance dissolved in a given volume of a solution is given by the equation:

$$
c=\frac{n}{V}
$$

where n is the amount of substance in moles, c is the concentration, and V is the volume in dm^{3}.

The equation can be rearranged to calculate:

- the amount of substance n, in moles, from a known volume and concentration of solution
- the volume V of a solution from a known amount of substance, in moles, and the concentration of the solution.

Practice questions

3 Calculate the concentration, in mol dm³, of a solution formed when 0.2 moles of a solute is dissolved in $50 \mathrm{~cm}^{3}$ of solution.
4 Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of a solution formed when 0.05 moles of a solute is dissolved in $2.0 \mathrm{dm}^{3}$ of solution.
5 Calculate the number of moles of NaOH in an aqueous solution of $36 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$.

4 Molar calculations

4.1 Calculating masses and gas volumes

The balanced equation for a reaction shows how many moles of each reactant and product are involved in a chemical reaction.

If the amount, in moles, of one of the reactants or products is known, the number of moles of any other reactants or products can be calculated.

The number of moles (n), the mass of the substance (m), and the molar mass (M) are linked by:

$$
n=\frac{m}{M}
$$

Note: The molar mass of a substance is the mass per mole of the substance. For CaCO_{3}, for example, the atomic mass of calcium is 40.1 , carbon is 12 , and oxygen is 16 . So the molar mass of CaCO_{3} is:
$40.1+12+(16 \times 3)=100.1$. The units are $\mathrm{g} \mathrm{mol}^{-1}$.

Look at this worked example. A student heated 2.50 g of calcium carbonate, which decomposed as shown in the equation:
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
The molar mass of calcium carbonate is $100.1 \mathrm{~g} \mathrm{~mol}^{-1}$.
a Calculate the amount, in moles, of calcium carbonate that decomposes.

$$
n=\frac{m}{M}=2.50 / 100.1=0.025 \mathrm{~mol}
$$

b Calculate the amount, in moles, of carbon dioxide that forms.
From the balanced equation, the number of moles of calcium carbonate $=$ number of moles of carbon dioxide $=0.025 \mathrm{~mol}$

Practice questions

1 In a reaction, 0.486 g of magnesium was added to oxygen to produce magnesium oxide.
$2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{s})$
a Calculate the amount, in moles, of magnesium that reacted.
b Calculate the amount, in moles, of magnesium oxide made.
c Calculate the mass, in grams, of magnesium oxide made.
2 Oscar heated 4.25 g of sodium nitrate. The equation for the decomposition of sodium nitrate is:
$2 \mathrm{NaNO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{NaNO}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$
a Calculate the amount, in moles, of sodium nitrate that reacted.
b Calculate the amount, in moles, of oxygen made.
30.500 kg of magnesium carbonate decomposes on heating to form magnesium oxide and carbon dioxide. Give your answers to 3 significant figures.
$\mathrm{MgCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{MgO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
a Calculate the amount, in moles, of magnesium carbonate used.
b Calculate the amount, in moles, of carbon dioxide produced.

5 Percentage yields and percentage errors

5.1 Calculating percentage yield

Chemists often find that an experiment makes a smaller amount of product than expected. They can predict the amount of product made in a reaction by calculating the percentage yield.

The percentage yield links the actual amount of product made, in moles, and the theoretical yield, in moles:

$$
\text { percentage yield }=\frac{\text { actual amount (in moles) of product }}{\text { theoretical amount (in moles) of product }} \times 100
$$

Look at this worked example. A student added ethanol to propanoic acid to make the ester, ethyl propanoate, and water.
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$
The experiment has a theoretical yield of 5.00 g .
The actual yield is 4.50 g .

The molar mass of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOC}_{2} \mathrm{H}_{5}=102.0 \mathrm{~g} \mathrm{~mol}^{-1}$
Calculate the percentage yield of the reaction.
Actual amount of ethyl propanoate: $n=\frac{m}{M}=4.5 / 102=0.0441 \mathrm{~mol}$
Theoretical amount of ethyl propanoate: $n=\frac{m}{M}=5.0 / 102=0.0490 \mathrm{~mol}$
percentage yield $=(0.0441 / 0.0490) \times 100 \%=90 \%$

Practice questions

1 Calculate the percentage yield of a reaction with a theoretical yield of 4.75 moles of product and an actual yield of 3.19 moles of product. Give your answer to 3 significant figures.
2 Calculate the percentage yield of a reaction with a theoretical yield of 12.00 moles of product and an actual yield of 6.25 moles of product. Give your answer to 3 significant figures.

5.2 Calculating percentage error in apparatus

The percentage error of a measurement is calculated from the maximum error for the piece of apparatus being used and the value measured:

$$
\text { percentage error }=\frac{\text { maximum error }}{\text { measured value }} \times 100 \%
$$

Look at this worked example. In an experiment to measure temperature changes, an excess of zinc powder was added to $50 \mathrm{~cm}^{3}$ of copper(II) sulfate solution to produce zinc sulfate and copper.

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

The measuring cylinder used to measure the copper(II) sulfate solution has a maximum error of $\pm 2 \mathrm{~cm}^{3}$.
a Calculate the percentage error.
percentage error $=(2 / 50) \times 100 \%=4 \%$
b A thermometer has a maximum error of $\pm 0.05^{\circ} \mathrm{C}$.
Calculate the percentage error when the thermometer is used to record a temperature rise of $3.9^{\circ} \mathrm{C}$. Give your answer to 3 significant figures.
percentage error $=(2 \times 0.05) / 3.9 \times 100 \%=2.56 \%$
(Notice that two measurements of temperature are required to calculate the temperature change so the maximum error is doubled.)

Practice questions

3 A gas syringe has a maximum error of $\pm 0.5 \mathrm{~cm}^{3}$. Calculate the maximum percentage error when recording these values. Give your answers to 3 significant figures.
a $21.0 \mathrm{~cm}^{3}$
b $43.0 \mathrm{~cm}^{3}$

4 A thermometer has a maximum error of $\pm 0.5^{\circ} \mathrm{C}$. Calculate the maximum percentage error when recording these temperature rises. Give your answers to 3 significant figures.
a $12.0^{\circ} \mathrm{C}$
b $37.6^{\circ} \mathrm{C}$

6 Graphs and tangents

6.1 Deducing reaction rates

To investigate the reaction rate during a reaction, you can measure the volume of the product formed, such as a gas, or the colour change to work out the concentration of a reactant during the experiment. By measuring this concentration at repeated intervals, you can plot a concentration-time graph.

Note: When a chemical is listed in square brackets, it just means 'the concentration of' that chemical. For example, $\left[\mathrm{O}_{2}\right]$ is just shorthand for the concentration of oxygen molecules.
By measuring the gradient (slope) of the graph, you can calculate the rate of the reaction. In the graph above, you can see that the gradient changes as the graph is a curve. If you want to know the rate of reaction when the graph is curved, you need to determine the gradient of the curve. So, you need to plot a tangent.
The tangent is the straight line that just touches the curve. The gradient of the tangent is the gradient of the curve at the point where it touches the curve.

Looking at the graph above. When the concentration of A has halved to $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$, the tangent intercepts the y-axis at 1.75 and the x-axis at 48 .
The gradient is $\frac{-1.75}{48}=-0.0365$ (3 s.f.).
So the rate is $0.0365 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$.

Practice questions

1 Using the graph above, calculate the rate of reaction when the concentration of A halves again to $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$.

6.2 Deducing the half-life of a reactant

In chemistry, half-life can also be used to describe the decrease in concentration of a reactant in a reaction. In other words, the half-life of a reactant is the time taken for the concentration of the reactant to fall by half.

Practice questions

2 The table below shows the change in concentration of bromine during the course of a reaction.

Time $/ \mathbf{s}$	$\left[\mathrm{Br}_{2}\right] / \mathrm{mol} \mathrm{dm}^{\mathbf{3}}$
0	0.0100
60	0.0090
120	0.0066
180	0.0053
240	0.0044
360	0.0028

a Plot a concentration-time graph for the data in the table.
b Calculate the rate of decrease of Br_{2} concentration by drawing tangents.
c Find the half-life at two points and deduce the order of the reaction.

Answers to maths skills practice questions

1 Core mathematics

```
1 a \(1.413 \times 10^{3}{ }^{\circ} \mathrm{C} \quad\) b \(1.0 \times 10^{-7} \mathrm{~m}\)
    c \(1.806 \times 10^{21}\) atoms
\(2 \quad\) a 0.0000055 b 290
    c 11150 d 0.001412
    e 72
3 a 36.9 b 260
    c 0.043 d 8000000
4 Number of molecules \(=0.5\) moles \(\times 6.022 \times 10^{23}=3.011 \times 10^{23}=3.01 \times 10^{23}\)
5 a \(4.8 \quad\) b 0.54
    c \(1.01 \quad\) d 2.000
6 a \(0.0003 \mathrm{~m} \quad\) b \(5 \times 10^{9} \mathrm{~mJ}\)
    c \(1 \times 10^{7} \mathrm{~kW}\)
```


2 Balancing chemical equations

1 a $2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO} \quad$ b N $2+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
c $\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2}$
2 a $\mathrm{C}_{6} \mathrm{H}_{14}+9 \frac{1}{2} \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+7 \mathrm{H}_{2} \mathrm{O}$ or $2 \mathrm{C}_{6} \mathrm{H}_{14}+19 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+14 \mathrm{H}_{2} \mathrm{O}$
b $2 \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+4 \frac{1}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$
or $4 \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+9 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{~N}_{2}$
3 a $\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
b $3 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{NaNO}_{3}$

3 Rearranging equations and calculating concentrations

1 a $n=c v$
b $v=\frac{n}{c}$
2 a $n=\frac{P V}{R T}$
b $T=\frac{P V}{n R}$
$3 \frac{0.2}{0.050}=4.0 \mathrm{~mol} \mathrm{dm}^{-3}$
$4 \quad \frac{0.05}{2}=0.025 \mathrm{~mol} \mathrm{dm}^{-3}$
$5 \quad \frac{36}{1000} \times 0.1=3.6 \times 10^{-3} \mathrm{~mol}$

4 Molar calculations

1 a $\frac{0.486}{24.3}=0.02 \mathrm{~mol} \quad$ b 0.02 mol
c $0.02 \times 40.3=0.806 \mathrm{~g}$

2 a $\frac{4.25}{85}=0.05 \mathrm{~mol} \quad$ b $\frac{0.05}{2}=0.025 \mathrm{~mol}$
$3 \quad$ a $\frac{500}{84.3}=5.93 \mathrm{~mol} \quad$ b 5.93 mol

5 Percentage yields and percentage errors

$13.19 / 4.75 \times 100=67.2 \%$
$26.25 / 12.00 \times 100=52.1 \%$
3 a $0.5 / 21 \times 100=2.38 \%$
b $0.5 / 43 \times 100=1.16 \%$
4 a $0.5 \times(2 / 12) \times 100=8.33 \%$
b $0.5 \times(2 / 37.6) \times 100=2.66 \%$

6 Graphs and tangents

$1 \frac{-1.25}{65}=-0.0192$
2 a

b Half-life is approximately 180 seconds
c The reaction is first order

